On a Lower Bound for the Laplacian Eigenvalues of a Graph

被引:0
作者
Greaves, Gary R. W. [1 ]
Munemasa, Akihiro [2 ]
Peng, Anni [3 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, 21 Nanyang Link, Singapore 637371, Singapore
[2] Tohoku Univ, Res Ctr Pure & Appl Math, Grad Sch Informat Sci, Sendai, Miyagi 9808579, Japan
[3] Tongji Univ, Sch Math Sci, 1239 Siping Rd, Shanghai, Peoples R China
关键词
Laplacian eigenvalues; Degree sequence;
D O I
10.1007/s00373-017-1835-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If mu(m) and d(m) denote, respectively, the m-th largest Laplacian eigenvalue and the m-th largest vertex degree of a graph, then mu(m) >= d(m) - m + 2. This inequality was conjectured by Guo (Linear Multilinear Algebra 55: 93-102, 2007) and proved by Brouwer and Haemers (Linear Algebra Appl 429: 2131-2135, 2008). Brouwer and Haemers gave several examples of graphs achieving equality, but a complete characterisation was not given. In this paper we consider the problem of characterising graphs satisfying mu(m) = d(m) - m + 2. In particular we give a full classification of graphs with mu(m) = d(m) - m + 2 <= 1.
引用
收藏
页码:1509 / 1519
页数:11
相关论文
共 5 条
[1]   A lower bound for the Laplacian eigenvalues of a graph - Proof of a conjecture by Guo [J].
Brouwer, Andries E. ;
Haemers, Willem H. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (8-9) :2131-2135
[2]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[3]   THE LAPLACIAN SPECTRUM OF A GRAPH .2. [J].
GRONE, R ;
MERRIS, R .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1994, 7 (02) :221-229
[4]   On the third largest Laplacian eigenvalue of a graph [J].
Guo, Ji-Ming .
LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (01) :93-102
[5]   A note on the second largest eigenvalue of the Laplacian matrix of a graph [J].
Li, JS ;
Pan, YL .
LINEAR & MULTILINEAR ALGEBRA, 2000, 48 (02) :117-121