RBiomirGS: an all-in-one miRNA gene set analysis solution featuring target mRNA mapping and expression profile integration

被引:30
作者
Zhang, Jing [1 ]
Storey, Kenneth B. [2 ,3 ]
机构
[1] Univ Western Ontario, Schulich Sch Med & Dent, London, ON, Canada
[2] Carleton Univ, Dept Biol, Inst Biochem, Ottawa, ON, Canada
[3] Carleton Univ, Dept Chem, Ottawa, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Logistic regression; Pathway analysis; Transcriptome; Gene set enrichment; Molecular biology; Post-transcriptional regulation; MAMMALIAN HIBERNATION; CIRCULATING MICRORNAS; DATABASE; TOOLS;
D O I
10.7717/peerj.4262
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background. With the continuous discovery of microRNAs (miRNA) association with a wide range of biological and cellular processes, expression profile-based functional characterization of such post-transcriptional regulation is crucial for revealing its significance behind particular phenotypes. Profound advancement in bioinformatics has been made to enable in depth investigation of miRNAs role in regulating cellular and molecular events, resulting in a huge quantity of software packages covering different aspects of miRNA functional analysis. Therefore, an all-in-one software solution is in demand for a comprehensive yet highly efficient workflow. Here we present RBiomirGS, an R package for a miRNA gene set (GS) analysis. Methods. The package utilizes multiple databases for target mRNA mapping, estimates miRNA effect on the target mRNAs through miRNA expression profile and conducts a logistic regression-based GS enrichment. Additionally, human ortholog Entrez ID conversion functionality is included for target mRNAs. Results. By incorporating all the core steps into one package, RBiomirGS eliminates the need for switching between different software packages. The modular structure of RBiomirGS enables various access points to the analysis, with which users can choose the most relevant functionalities for their workflow. Conclusions. With RBiomirGS, users are able to assess the functional significance of the miRNA expression profile under the corresponding experimental condition by minimal input and intervention. Accordingly, RBiomirGS encompasses an all-in-one solution for miRNA GS analysis. RBiomirGS is available on GitHub (http://github.com/jzhangc/RBiomirGS). More information including instruction and examples can be found on website (http://kenstoreylab.com/?page_id=2865).
引用
收藏
页数:17
相关论文
共 45 条
[1]   Bioinformatic tools for microRNA dissection [J].
Akhtar, Most Mauluda ;
Micolucci, Luigina ;
Islam, Md Soriful ;
Olivieri, Fabiola ;
Procopio, Antonio Domenico .
NUCLEIC ACIDS RESEARCH, 2016, 44 (01) :24-44
[2]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[3]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[4]   The microRNA.org resource: targets and expression [J].
Betel, Doron ;
Wilson, Manda ;
Gabow, Aaron ;
Marks, Debora S. ;
Sander, Chris .
NUCLEIC ACIDS RESEARCH, 2008, 36 :D149-D153
[5]   Bias in microRNA functional enrichment analysis [J].
Bleazard, Thomas ;
Lamb, Janine A. ;
Griffiths-Jones, Sam .
BIOINFORMATICS, 2015, 31 (10) :1592-1598
[6]   A LIMITED MEMORY ALGORITHM FOR BOUND CONSTRAINED OPTIMIZATION [J].
BYRD, RH ;
LU, PH ;
NOCEDAL, J ;
ZHU, CY .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (05) :1190-1208
[7]   High-Throughput Sequencing Reveals Differential Expression of miRNAs in Intestine from Sea Cucumber during Aestivation [J].
Chen, Muyan ;
Zhang, Xiumei ;
Liu, Jianning ;
Storey, Kenneth B. .
PLOS ONE, 2013, 8 (10)
[8]   miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database [J].
Chou, Chih-Hung ;
Chang, Nai-Wen ;
Shrestha, Sirjana ;
Hsu, Sheng-Da ;
Lin, Yu-Ling ;
Lee, Wei-Hsiang ;
Yang, Chi-Dung ;
Hong, Hsiao-Chin ;
Wei, Ting-Yen ;
Tu, Siang-Jyun ;
Tsai, Tzi-Ren ;
Ho, Shu-Yi ;
Jian, Ting-Yan ;
Wu, Hsin-Yi ;
Chen, Pin-Rong ;
Lin, Nai-Chieh ;
Huang, Hsin-Tzu ;
Yang, Tzu-Ling ;
Pai, Chung-Yuan ;
Tai, Chun-San ;
Chen, Wen-Liang ;
Huang, Chia-Yen ;
Liu, Chun-Chi ;
Weng, Shun-Long ;
Liao, Kuang-Wen ;
Hsu, Wen-Lian ;
Huang, Hsien-Da .
NUCLEIC ACIDS RESEARCH, 2016, 44 (D1) :D239-D247
[9]   The statistical properties of gene-set analysis [J].
de Leeuw, Christiaan A. ;
Neale, Benjamin M. ;
Heskes, Tom ;
Posthuma, Danielle .
NATURE REVIEWS GENETICS, 2016, 17 (06) :353-364
[10]   BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis [J].
Durinck, S ;
Moreau, Y ;
Kasprzyk, A ;
Davis, S ;
De Moor, B ;
Brazma, A ;
Huber, W .
BIOINFORMATICS, 2005, 21 (16) :3439-3440