A sufficient condition for a polynomial to be stable

被引:24
作者
Katkova, Olga M. [1 ]
Vishnyakova, Anna M. [1 ]
机构
[1] Kharkov Natl Univ, Dept Math, UA-61077 Kharkov, Ukraine
关键词
Hurwitz polynomial; stable polynomial; location of zeros of real polynomial;
D O I
10.1016/j.jmaa.2008.05.079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A real polynomial is called Hurwitz (stable) if all its zeros have negative real parts. For a given n is an element of N we find the smallest possible constant d(n) > 0 such that if the coefficients of F(z) = a(0) + a(1)z + ... + a(n)z(n) are positive and satisfy the inequalities a(k)a(k+1) > d(n)a(k-1)a(k+2) for k = 1, 2, ..., n - 2, then F(z) is Hurwitz. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:81 / 89
页数:9
相关论文
共 12 条
[1]  
Aissen M., 1952, J. Anal. Math., V2, P93, DOI 10.1007/BF02786970
[2]  
[Anonymous], MATH SURVEYS MONOGR
[3]  
Biehler M., 1879, J REINE ANGEW MATH, V87, P350
[4]   Almost strict total positivity and a class of Hurwitz polynomials [J].
Dimitrov, DK ;
Peña, JM .
JOURNAL OF APPROXIMATION THEORY, 2005, 132 (02) :212-223
[5]  
Gantmacher F. R., 1959, THEORY MATRICES, V2
[6]  
Hermite C., 1856, Journal fur die Reine und Angewandte Mathematik, V52, P39, DOI [10.1515/crll.1856.52.39, DOI 10.1515/CRLL.1856.52.39]
[7]   A remarkable class of entire functions [J].
Hutchinson, J. I. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1923, 25 (1-4) :325-332
[8]   On sufficient conditions for the total positivity and for the multiple positivity of matrices [J].
Katkova, Olga M. ;
Vishnyakova, Anna M. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 416 (2-3) :1083-1097
[9]   A SUFFICIENT CONDITION FOR ALL THE ROOTS OF A POLYNOMIAL TO BE REAL [J].
KURTZ, DC .
AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (03) :259-266
[10]  
Levin B.Ya., 1980, TRANSL MATH MONOGR, V5