Density Scaling in Ionic Glass Formers Controlled by Grotthuss Conduction

被引:9
|
作者
Wojnarowska, Z. [1 ,2 ]
Tajber, L. [2 ]
Paluch, M. [1 ]
机构
[1] Univ Silesia, Inst Phys, SMCEBI, 75 Pulku Piechoty 1A, PL-41500 Chorzow, Poland
[2] Trinity Coll Dublin, Coll Green, Sch Pharm & Pharmaceut Sci, Dublin 2, Ireland
基金
爱尔兰科学基金会;
关键词
PROTON CONDUCTIVITY; CHARGE-TRANSPORT; LIQUID; BEHAVIOR; DYNAMICS; MECHANISM; RELAXATION; VISCOSITY;
D O I
10.1021/acs.jpcb.8b09396
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present investigations of the charge transport in an ionic glass-former carvedilol dihydrogen phosphate (CP) at various T-P-V thermodynamic conditions in terms of density scaling concept. The studied material was found to reveal superprotonic properties both at ambient and elevated pressure, as proved by the Walden rule. Surprisingly, from the isobaric conductivity data, the relaxation times tau(sigma) presented in volume formalism showed no visual evidence of a liquid-glass transition. The different behavior of relaxation dynamics above and below T-g was only revealed from the analysis of log tau(sigma) (V-sp ) data at isochronal conditions. The tau(sigma) experimental data of CP plotted as a function of (TV gamma)(-1) satisfy the thermodynamic scaling criterion in the supercooled liquid as well as in the amorphous regime, however with a different gamma coefficient (gamma(SL) = 1.12; gamma(G) = 0.48). Nevertheless, by introducing the idea of fictive temperature T-f the transport properties of glassy and supercooled Grotthuss-type conductors measured at various T-P points obey the universal scaling with the use of a single gamma parameter.
引用
收藏
页码:1156 / 1160
页数:5
相关论文
共 28 条
  • [1] Defect diffusion and temperature vs. density effects for glass formers
    Bendler, J. T.
    Fontanella, J. J.
    Shlesinger, M. F.
    Wintersgill, M. C.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2010, 356 (11-17) : 547 - 552
  • [2] Density scaling of structure and dynamics of an ionic liquid
    Hansen, Henriette Wase
    Lundin, Filippa
    Adrjanowicz, Karolina
    Frick, Bernhard
    Matic, Aleksandar
    Niss, Kristine
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (25) : 14169 - 14176
  • [3] Density scaling of the transport properties of molecular and ionic liquids
    Lopez, Enriqueta R.
    Pensado, Alfonso S.
    Comunas, Maria J. P.
    Padua, Agilio A. H.
    Fernandez, Josefa
    Harris, Kenneth R.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (14)
  • [4] Dynamics of strong and fragile glass formers and a scaling procedure for the temperature dependence of the viscosity
    Rossler, E
    Kudlik, A
    Hess, KU
    Dingwell, DB
    Sokolov, AP
    Novikov, VN
    BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1996, 100 (09): : 1402 - 1407
  • [5] The defect diffusion model, scaling, E*V/H* and monomer volume and correlation lengths for glass-formers
    Bendier, J. T.
    Fontanella, J. J.
    Shlesinger, M. F.
    Wintersgill, M. C.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2011, 357 (02) : 404 - 410
  • [6] On the density scaling of pVT data and transport properties for molecular and ionic liquids
    Lopez, Enriqueta R.
    Pensado, Alfonso S.
    Fernandez, Josefa
    Harris, Kenneth R.
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (21)
  • [7] Scaling features of conductivity spectra reveal complexities in ionic, polaronic and mixed ionic-polaronic conduction in phosphate glasses
    Santic, Ana
    Nikolic, Jurai
    Pavic, Luka
    Banhatti, Radha D.
    Mosner, Petr
    Koudelka, Ladislav
    Mogus-Milankovic, Andrea
    ACTA MATERIALIA, 2019, 175 : 46 - 54
  • [8] Glass Transition Temperature and Density Scaling in Cumene at Very High Pressure
    Ransom, T. C.
    Oliver, W. F.
    PHYSICAL REVIEW LETTERS, 2017, 119 (02)
  • [9] Universal critical-like scaling of dynamic properties in symmetry-selected glass formers
    Drozd-Rzoska, Aleksandra
    Rzoska, Sylwester J.
    Paluch, Marian
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (18)
  • [10] Density scaling in viscous systems near the glass transition
    Grzybowski, A.
    Grzybowska, K.
    Paluch, M.
    Swiety, A.
    Koperwas, K.
    PHYSICAL REVIEW E, 2011, 83 (04):