Macdonald Polynomials in Superspace: Conjectural Definition and Positivity Conjectures

被引:15
作者
Blondeau-Fournier, Olivier [1 ]
Desrosiers, Patrick [2 ]
Lapointe, Luc [2 ]
Mathieu, Pierre [1 ]
机构
[1] Univ Laval, Dept Phys Genie Phys & Opt, Quebec City, PQ G1V 0A6, Canada
[2] Univ Talca, Inst Matemat & Fis, Talca, Chile
基金
加拿大自然科学与工程研究理事会;
关键词
Symmetric polynomials; Superspace; Macdonald; Hall-Littlewood and Schur polynomials; Positivity conjectures; JACK POLYNOMIALS; SYSTEMS;
D O I
10.1007/s11005-011-0542-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a conjectural construction for an extension to superspace of the Macdonald polynomials. The construction, which depends on certain orthogonality and triangularity relations, is tested for high degrees. We conjecture a simple form for the norm of the Macdonald polynomials in superspace and a rather non-trivial expression for their evaluation. We study the limiting cases q = 0 and q = a, which lead to two families of Hall-Littlewood polynomials in superspace. We also find that the Macdonald polynomials in superspace evaluated at q = t = 0 or q = t = a seem to generalize naturally the Schur functions. In particular, their expansion coefficients in the corresponding Hall-Littlewood bases appear to be polynomials in t with nonnegative integer coefficients. More strikingly, we formulate a generalization of the Macdonald positivity conjecture to superspace: the expansion coefficients of the Macdonald superpolynomials expanded into a modified version of the Schur superpolynomial basis (the q = t = 0 family) are polynomials in q and t with nonnegative integer coefficients.
引用
收藏
页码:27 / 47
页数:21
相关论文
共 23 条
[1]  
Bergeron F., 2009, ALGEBRAIC COMBINATOR
[2]   THE CALOGERO MODEL - ANYONIC REPRESENTATION, FERMIONIC EXTENSION AND SUPERSYMMETRY [J].
BRINK, L ;
HANSSON, TH ;
KONSTEIN, S ;
VASILIEV, MA .
NUCLEAR PHYSICS B, 1993, 401 (03) :591-612
[3]   Jack polynomials in superspace [J].
Desrosiers, P ;
Lapointe, L ;
Mathieu, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 242 (1-2) :331-360
[4]   Supersymmetric Calogero-Moser-Sutherland models and Jack superpolynomials [J].
Desrosiers, P ;
Lapointe, L ;
Mathieu, P .
NUCLEAR PHYSICS B, 2001, 606 (03) :547-582
[5]  
Desrosiers P., ARXIV11092832V1
[6]   Orthogonality of Jack polynomials in superspace [J].
Desrosiers, Patrick ;
Lapointe, Luc ;
Mathieu, Pierre .
ADVANCES IN MATHEMATICS, 2007, 212 (01) :361-388
[7]   Classical symmetric functions in superspace [J].
Desrosiers, Patrick ;
Lapointe, Luc ;
Mathieu, Pierre .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2006, 24 (02) :209-238
[8]   Evaluation and Normalization of Jack Superpolynomials [J].
Desrosiers, Patrick ;
Lapointe, Luc ;
Mathieu, Pierre .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (23) :5267-5327
[9]  
Feigin B, 2003, INT MATH RES NOTICES, V2003, P1015
[10]  
Feigin B, 2002, INT MATH RES NOTICES, V2002, P1223