Application of the optimal homotopy asymptotic method for the solution of the Korteweg-de Vries equation

被引:20
作者
Idrees, M. [1 ]
Islam, S. [2 ]
Tirmizi, S. I. A. [1 ]
Haq, Sirajul [1 ]
机构
[1] Ghulam Ishaq Khan Inst Engn Sci & Technol, Fac Engn Sci, Swabi, Nwfp, Pakistan
[2] COMSATS Inst Informat Technol, Dept Math, Islamabad, Pakistan
关键词
Asymptotic method; Initial value and time-dependent partial differential equations; Perturbation; FLUID; FLOW;
D O I
10.1016/j.mcm.2011.10.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Optimal Homotopy Asymptotic Method (OHAM), a semi-analytic approximate technique for the treatment of time-dependent partial differential equations, has been used in this presentation. To see the effectiveness of the method, we consider Korteweg-de Vries (KdV) equation with different initial conditions. It provides us with a convenient way to control the convergence of approximate solutions. The obtained solutions show that the OHAM is more effective, simpler and easier than other methods. The results reveal that the method is explicit. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1324 / 1333
页数:10
相关论文
共 29 条
[11]  
Herisanu N, 2008, P ROMANIAN ACAD A, V9, P229
[12]   Application of the Optimal Homotopy Asymptotic Method to squeezing flow [J].
Idrees, M. ;
Islam, S. ;
Haq, Sirajul ;
Islam, Sirajul .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (12) :3858-3866
[13]  
Idrees M., 2010, WORLD APPL SCI J, V9, P131
[14]  
Idrees M., 2010, WORLD APPL SCI J, V9, P138
[15]   Some solutions of the linear and nonlinear Klein-Gordon equations using the optimal homotopy asymptotic method [J].
Iqbal, S. ;
Idrees, M. ;
Siddiqui, A. M. ;
Ansari, A. R. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (10) :2898-2909
[16]  
Islam S, 2010, INT J NONLIN SCI NUM, V11, P389
[17]  
Islam S, 2009, INT J NONLIN SCI NUM, V10, P99
[18]   Solitary wave solutions for the KdV and mKdV equations by differential transform method [J].
Kangalgil, Figen ;
Ayaz, Fatma .
CHAOS SOLITONS & FRACTALS, 2009, 41 (01) :464-472
[19]   An application for a generalized KdV equation by the decomposition method [J].
Kaya, D ;
Aassila, M .
PHYSICS LETTERS A, 2002, 299 (2-3) :201-206
[20]   An optimal homotopy-analysis approach for strongly nonlinear differential equations [J].
Liao, Shijun .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (08) :2003-2016