Well-solvable cases of the QAP with block-structured matrices

被引:11
作者
Cela, Eranda [1 ]
Deineko, Vladimir G. [2 ]
Woeginger, Gerhard J. [3 ]
机构
[1] Graz Univ Technol, Inst Optimierung & Diskrete Math, A-8010 Graz, Austria
[2] Univ Warwick, Warwick Business Sch, Coventry CV4 7AL, W Midlands, England
[3] TU Eindhoven, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
基金
奥地利科学基金会;
关键词
Combinatorial optimization; Computational complexity; Cut problem; Balanced cut; Monge condition; Product matrix; MONGE;
D O I
10.1016/j.dam.2015.01.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate special cases of the quadratic assignment problem (QAP) where one of the two underlying matrices carries a simple block structure. For the special case where the second underlying matrix is a monotone anti-Monge matrix, we derive a polynomial time result for a certain class of cut problems. For the special case where the second underlying matrix is a product matrix, we identify two sets of conditions on the block structure that make this QAP polynomially solvable and NP-hard, respectively. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:56 / 65
页数:10
相关论文
共 16 条
[1]  
[Anonymous], 2009, Assignment Problems, DOI DOI 10.1137/1.9780898717754
[2]   The quadratic assignment problem with a monotone anti-Monge and a symmetric Toeplitz matrix: Easy and hard cases [J].
Burkard, RE ;
Cela, E ;
Rote, G ;
Woeginger, GJ .
MATHEMATICAL PROGRAMMING, 1998, 82 (1-2) :125-158
[3]   Perspectives of Monge properties in optimization [J].
Burkard, RE ;
Klinz, B ;
Rudolf, R .
DISCRETE APPLIED MATHEMATICS, 1996, 70 (02) :95-161
[4]  
CELA E, 1998, QUADRATIC ASSIGNMENT
[5]   Another well-solvable case of the QAP: Maximizing the job completion time variance [J].
Cela, Eranda ;
Deineko, Vladimir G. ;
Woeginger, Gerhard J. .
OPERATIONS RESEARCH LETTERS, 2012, 40 (05) :356-359
[6]   The Wiener maximum quadratic assignment problem [J].
Cela, Eranda ;
Schmuck, Nina S. ;
Wimer, Shmuel ;
Woeginger, Gerhard J. .
DISCRETE OPTIMIZATION, 2011, 8 (03) :411-416
[7]   A solvable case of the quadratic assignment problem [J].
Deineko, VG ;
Woeginger, GJ .
OPERATIONS RESEARCH LETTERS, 1998, 22 (01) :13-17
[8]  
Garey MR., 1979, Computers and Intractability
[9]  
A Guide to the Theory of NP-Completeness
[10]   ASSIGNMENT PROBLEMS AND THE LOCATION OF ECONOMIC-ACTIVITIES [J].
KOOPMANS, TC ;
BECKMANN, M .
ECONOMETRICA, 1957, 25 (01) :53-76