ABELIAN GROUPS OF ZERO ADJOINT ENTROPY

被引:5
作者
Salce, L. [1 ]
Zanardo, P. [1 ]
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35121 Padua, Italy
关键词
adjoint algebraic entropy; Abelian groups; endomorphism rings; ALGEBRAIC ENTROPY;
D O I
10.4064/cm121-1-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of adjoint entropy for endomorphisms of an Abelian group is somehow dual to that of algebraic entropy. The Abelian groups of zero adjoint entropy, i.e. ones whose endomorphisms all have zero adjoint entropy, are investigated. Torsion groups and cotorsion groups satisfying this condition are characterized. It is shown that many classes of torsion free groups contain groups of either zero or infinite adjoint entropy. In particular, no characterization of torsionfree groups of zero adjoint entropy is possible. It is also proved that the mixed groups of a wide class all have infinite adjoint entropy.
引用
收藏
页码:45 / 62
页数:18
相关论文
共 19 条
[1]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[2]  
AKHAVIN M, 2009, QUAEST MATH, V32, P1
[3]  
ARNOLD DM, 1982, LECT NOTES MATH, V931
[4]  
BRUNO AG, ALGEBRAIC E IN PRESS
[5]   ON ENDOMORPHISM RINGS OF PRIMARY ABELIAN GROUPS [J].
CORNER, ALS .
QUARTERLY JOURNAL OF MATHEMATICS, 1969, 20 (79) :277-&
[6]  
CORNER ALS, 1963, P LOND MATH SOC, V13, P687
[7]   Adjoint algebraic entropy [J].
Dikranjan, Dikran ;
Giordano Bruno, Anna ;
Salce, Luigi .
JOURNAL OF ALGEBRA, 2010, 324 (03) :442-463
[8]   ALGEBRAIC ENTROPY FOR ABELIAN GROUPS [J].
Dikranjan, Dikran ;
Goldsmith, Brendan ;
Salce, Luigi ;
Zanardo, Paolo .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (07) :3401-3434
[9]  
Eklof P C., 2002, Almost free modules: Set-theoretic methods
[10]  
FRANZEN B, 1985, J LOND MATH SOC, V31, P468