The fundamental group and extensions of motives of Jacobians of curves

被引:2
作者
Sarkar, Subham [1 ]
Sreekantan, Ramesh [2 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Dr Homi Bhabha Rd, Mumbai 400005, Maharashtra, India
[2] Indian Stat Inst, Stat & Math Unit, 8th Mile,Mysore Rd, Bengaluru 560059, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2020年 / 130卷 / 01期
关键词
Algebraic cycles; mixed Hodge structures; extensions; regulators; curves; Jacobians; higher Chow cycles; motivic cycles; MIXED HODGE STRUCTURE;
D O I
10.1007/s12044-019-0539-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct extensions of mixed Hodge structure coming from the mixed Hodge structure on the graded quotients of the group ring of the fundamental group of a smooth projective pointed curve which correspond to the regulators of certain motivic cohomology cycles on the Jacobian of the curve essentially constructed by Bloch and Beilinson. This leads to a new iterated integral expression for the regulator. This is a generalisation of a theorem of Colombo (J. Algebr. Geom.11(4) (2002) 761-790) where she constructed the extension corresponding to Collino's cycles in the Jacobian of a hyperelliptic curve.
引用
收藏
页数:36
相关论文
共 19 条
[1]  
[Anonymous], 1992, Graduate Texts in Mathematics, DOI DOI 10.1007/978-1-4612-2034-3
[2]  
BLOCH S, 1984, J REINE ANGEW MATH, V350, P94
[3]  
Bloch S. J., 2000, CRM Monograph Series, V11
[4]  
Carlson J. A., 1980, Journees de Geometrie Algebrique d'Angers (Angers, 1979), P107
[5]   ITERATED PATH INTEGRALS [J].
CHEN, KT .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (05) :831-879
[6]  
Collino A, 1997, J ALGEBRAIC GEOM, V6, P393
[8]  
Darmon H., 2012, PUBL MATH BESANCON A, V2012, P19
[9]  
HAIN RM, 1987, P SYMP PURE MATH, V46, P247
[10]   HOMOLOGICAL VERSUS ALGEBRAIC EQUIVALENCE IN A JACOBIAN [J].
HARRIS, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1983, 80 (04) :1157-1158