On the structure of a family of quasilinear equations arising in shallow water theory

被引:53
作者
Constantin, A
Escher, J
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
[2] Univ Kassel, FB Math 17, D-34132 Kassel, Germany
关键词
D O I
10.1007/s002080050228
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:403 / 416
页数:14
相关论文
共 21 条
[1]   ON THE LINK BETWEEN UMBILIC GEODESICS AND SOLITON-SOLUTIONS OF NONLINEAR PDES [J].
ALBER, MS ;
CAMASSA, R ;
HOLM, DD ;
MARSDEN, JE .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 450 (1940) :677-692
[2]   THE GEOMETRY OF PEAKED SOLITONS AND BILLIARD SOLUTIONS OF A CLASS OF INTEGRABLE PDES [J].
ALBER, MS ;
CAMASSA, R ;
HOLM, DD ;
MARSDEN, JE .
LETTERS IN MATHEMATICAL PHYSICS, 1994, 32 (02) :137-151
[3]  
[Anonymous], 1997, DISCRETE CONT DYN-A, DOI 10.3934/dcds.1997.3.419
[4]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[5]  
CAMASSA R, 1993, BIHAMILTONIAN SHALLO
[6]   On the cauchy problem for the periodic Camassa-Holm equation [J].
Constantin, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 141 (02) :218-235
[7]  
Constantin A, 1998, COMMUN PUR APPL MATH, V51, P475, DOI 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO
[8]  
2-5
[9]   SOLITONS IN THE CAMASSA-HOLM SHALLOW-WATER EQUATION [J].
COOPER, F ;
SHEPARD, H .
PHYSICS LETTERS A, 1994, 194 (04) :246-250
[10]  
Dieudonne J., 1969, Foundations of Modern Analysis