VARIATIONAL MULTISCALE FINITE ELEMENT METHOD FOR FLOWS IN HIGHLY POROUS MEDIA

被引:32
|
作者
Iliev, O. [1 ,2 ]
Lazarov, R. [2 ,3 ]
Willems, J. [3 ]
机构
[1] Fraunhofer Inst Techno & Wirtschaftsmath, D-67663 Kaiserslautern, Germany
[2] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
[3] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
来源
MULTISCALE MODELING & SIMULATION | 2011年 / 9卷 / 04期
基金
美国国家科学基金会;
关键词
numerical upscaling; flow in heterogeneous porous media; Brinkman equations; Darcy's law; subgrid approximation; discontinuous Galerkin mixed finite element method; NAVIER-STOKES EQUATIONS; HETEROGENEOUS FORMATIONS; DOMAIN DECOMPOSITION; ELLIPTIC PROBLEMS; VOLUME METHOD; HOMOGENIZATION; FRAMEWORK; FLUID;
D O I
10.1137/10079940X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a two-scale finite element method (FEM) for solving Brinkman's and Darcy's equations. These systems of equations model fluid flows in highly porous and porous media, respectively. The method uses a recently proposed discontinuous Galerkin FEM for Stokes' equations by Wang and Ye and the concept of subgrid approximation developed by Arbogast for Darcy's equations. In order to reduce the "resonance error" and to ensure convergence to the global fine solution, the algorithm is put in the framework of alternating Schwarz iterations using subdomains around the coarse-grid boundaries. The discussed algorithms are implemented using the Deal. II finite element library and are tested on a number of model problems.
引用
收藏
页码:1350 / 1372
页数:23
相关论文
共 50 条
  • [1] A variational multiscale finite element method for multiphase flow in porous media
    Juanes, R
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2005, 41 (7-8) : 763 - 777
  • [2] Multiscale finite element methods for porous media flows and their applications
    Efendiev, Y.
    Hou, T.
    APPLIED NUMERICAL MATHEMATICS, 2007, 57 (5-7) : 577 - 596
  • [3] A multiscale mortar mixed finite element method for slightly compressible flows in porous media
    Kim, Mi-Young
    Park, Eun-Jae
    Thomas, Sunil G.
    Wheeler, Mary F.
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (05) : 1103 - 1119
  • [4] MIXED MULTISCALE FINITE ELEMENT METHODS FOR STOCHASTIC POROUS MEDIA FLOWS
    Aarnes, J. E.
    Efendiev, Y.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (05): : 2319 - 2339
  • [5] Multiscale finite element method for nonlinear flow in porous media
    Zhang, Na
    Yao, Jun
    Huang, Zhaoqin
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2015, 46 (12): : 4584 - 4591
  • [6] EXPANDED MIXED MULTISCALE FINITE ELEMENT METHODS AND THEIR APPLICATIONS FOR FLOWS IN POROUS MEDIA
    Jiang, L.
    Copeland, D.
    Moulton, J. D.
    MULTISCALE MODELING & SIMULATION, 2012, 10 (02): : 418 - 450
  • [7] Application of the multiscale finite element method to flow in heterogeneous porous media
    Ye, SJ
    Xue, YQ
    Xie, CH
    WATER RESOURCES RESEARCH, 2004, 40 (09) : W0920201 - W0920209
  • [8] Multiscale extended finite element method for deformable fractured porous media
    Xu, Fanxiang
    Hajibeygi, Hadi
    Sluys, Lambertus J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 436
  • [9] Variational eigenstrain multiscale finite element method
    Li, SF
    Gupta, A
    Liu, XH
    Mahyari, M
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (17-20) : 1803 - 1824
  • [10] Application of the mixed multiscale finite element method to parallel simulations of two-phase flows in porous media
    Puscas, Maria Adela
    Enchery, Guillaume
    Desroziers, Sylvain
    OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2018, 73