Role of beta-cell dysfunction, ectopic fat accumulation and insulin resistance in the pathogenesis of type 2 diabetes mellitus

被引:85
作者
Gastaldelli, Amalia [1 ]
机构
[1] Natl Res Council CNR, Inst Clin Physiol, I-56126 Pisa, Italy
关键词
Diabetes mellitus type 2; Ectopic fat; Insulin resistance; Beta cells; NONDIABETIC SUBJECTS; GLUCOSE-METABOLISM; ACIDS; OBESITY; GLUCONEOGENESIS; LIVER; SECRETION; HUMANS; GLYCOGENOLYSIS; TRIUMVIRATE;
D O I
10.1016/S0168-8227(11)70015-8
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In the natural history of type 2 diabetes (T2DM), individuals progress from normal glucose tolerance (NGT) to impaired glucose tolerance (IGT) to overt T2DM and this progression has been demonstrated in populations of diverse ethnic background. It is widely recognised that both insulin resistance and beta-cell dysfunction are important in the pathogenesis of glucose intolerance. In populations with a high prevalence of T2DM, insulin resistance is well established long before the development of any impairment in glucose homeostasis, particularly in subjects with ectopic fat accumulation. However, as long as the beta cell is able to secrete sufficient amounts of insulin to offset the severity of insulin resistance, glucose tolerance remains normal. This dynamic interaction between insulin secretion and insulin resistance is essential to the maintenance of NGT and interruption of this cross-talk between the beta cell and peripheral tissues results in the progressive deterioration of glucose homeostasis. In this paper the role of beta-cell function is reviewed, as well as the role of ectopic fat accumulation and insulin resistance in the development of type 2 diabetes. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:S60 / S65
页数:6
相关论文
共 39 条
[1]   Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: Peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach [J].
Bays, H ;
Mandarino, L ;
DeFronzo, RA .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2004, 89 (02) :463-478
[2]  
Bergman Richard N., 1998, Journal of Basic and Clinical Physiology and Pharmacology, V9, P205
[3]   EFFECTS OF A 48-H FAT INFUSION ON INSULIN-SECRETION AND GLUCOSE-UTILIZATION [J].
BODEN, G ;
CHEN, XH ;
ROSNER, J ;
BARTON, M .
DIABETES, 1995, 44 (10) :1239-1242
[4]   Effects of free fatty acids (FFA) on glucose metabolism: Significance for insulin resistance and type 2 diabetes [J].
Boden, G .
EXPERIMENTAL AND CLINICAL ENDOCRINOLOGY & DIABETES, 2003, 111 (03) :121-124
[5]   Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects [J].
Boden, G ;
Lebed, B ;
Schatz, M ;
Homko, C ;
Lemieux, S .
DIABETES, 2001, 50 (07) :1612-1617
[6]   FFA cause hepatic insulin resistance by inhibiting insulin suppression of glycogenolysis [J].
Boden, G ;
Cheung, P ;
Stein, TP ;
Kresge, K ;
Mozzoli, M .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2002, 283 (01) :E12-E19
[7]   Free fatty acids in obesity and type 2 diabetes:: defining their role in the development of insulin resistance and β-cell dysfunction [J].
Boden, G ;
Shulman, GI .
EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2002, 32 :14-23
[8]   Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms [J].
Bugianesi, E ;
Gastaldelli, A ;
Vanni, E ;
Gambino, R ;
Cassader, M ;
Baldi, S ;
Ponti, V ;
Pagano, G ;
Ferrannini, E ;
Rizzetto, M .
DIABETOLOGIA, 2005, 48 (04) :634-642
[9]   β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes [J].
Butler, AE ;
Janson, J ;
Bonner-Weir, S ;
Ritzel, R ;
Rizza, RA ;
Butler, PC .
DIABETES, 2003, 52 (01) :102-110
[10]   Abdominal fat and insulin resistance in normal and overweight women - Direct measurements reveal a strong relationship in subjects at both low and high risk of NIDDM [J].
Carey, DG ;
Jenkins, AB ;
Campbell, LV ;
Freund, J ;
Chisholm, DJ .
DIABETES, 1996, 45 (05) :633-638