A metal-organic framework (MOF)-based temperature swing adsorption cycle for postcombustion CO2 capture from wet flue gas

被引:41
作者
Peh, Shing Bo [1 ]
Farooq, Shamsuzzaman [1 ]
Zhao, Dan [1 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, 4 Engn Dr 4, Singapore 117585, Singapore
基金
新加坡国家研究基金会;
关键词
Metal-organic frameworks; Gas separation; Temperature-swing adsorption; CO2; capture; CARBON-DIOXIDE CAPTURE; PROCESS LANGMUIR MODEL; WATER-VAPOR; SOLID SORBENTS; HEAT-TRANSFER; FINNED TUBES; DESIGN; OPTIMIZATION; SIMULATION; SORPTION;
D O I
10.1016/j.ces.2021.117399
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
We report a simulation-based feasibility study of a single-stage temperature swing adsorption (TSA) process operated on a metal-organic framework (MOF) adsorbent, UTSA-16, for CO2 capture and concentration from a wet flue gas without pre-drying or a desiccant pre-layer. Two cycles comprising four and five steps are compared. A non-isothermal and non-isobaric in-house simulator including suitably modelled equilibrium and kinetics of H2O-CO2-N-2 ternary system is used to investigate the cyclic processes. The variables investigated are moisture-saturated flue gas at two feed and three regeneration temperatures. Both TSA cycles can meet 95% purity-90% recovery targets for postcombustion streams representative of wet flue gas from a coal-fired power plant (after SOx/NOx removal). The maximum productivity attained is 91.8 kg CO2 m(-3)& nbsp;adsorber h-1 for 15% CO2, 82 % N-2, and 3% H2O feed at 25 ? (i.e., 95% relative humidity) operated on a five-step cycle and regenerated at 150 ?.(C)& nbsp;2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 80 条
[1]   Adsorption and diffusion of H2, N2, CO, CH4 and CO2 in UTSA-16 metal-organic framework extrudates [J].
Agueda, Vicente I. ;
Delgado, Jose A. ;
Uguina, Maria A. ;
Brea, Pablo ;
Spjelkavik, Aud I. ;
Blom, Richard ;
Grande, Carlos .
CHEMICAL ENGINEERING SCIENCE, 2015, 124 :159-169
[2]  
[Anonymous], 2014, Environmental Policy Collection
[3]   Challenging offers of material science for adsorption heat transformation: A review [J].
Aristov, Yuriy I. .
APPLIED THERMAL ENGINEERING, 2013, 50 (02) :1610-1618
[4]   Analysis and Status of Post-Combustion Carbon Dioxide Capture Technologies [J].
Bhown, Abhoyjit S. ;
Freeman, Brice C. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (20) :8624-8632
[5]   Data-driven design of metal-organic frameworks for wet flue gas CO2 capture [J].
Boyd, Peter G. ;
Chidambaram, Arunraj ;
Garcia-Diez, Enrique ;
Ireland, Christopher P. ;
Daff, Thomas D. ;
Bounds, Richard ;
Gladysiak, Andrzej ;
Schouwink, Pascal ;
Moosavi, Seyed Mohamad ;
Maroto-Valer, M. Mercedes ;
Reimer, Jeffrey A. ;
Navarro, Jorge A. R. ;
Woo, Tom K. ;
Garcia, Susana ;
Stylianou, Kyriakos C. ;
Smit, Berend .
NATURE, 2019, 576 (7786) :253-+
[6]   Carbon capture test unit design and development using amine-based solid sorbent [J].
Breault, Ronald W. ;
Spenik, James L. ;
Shadle, Lawrence J. ;
Hoffman, James S. ;
Gray, McMahan L. ;
Panday, Rupen ;
Stehle, Richard C. .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 2016, 112 :251-262
[7]  
Bruce E.P., 2001, PROPERTIES GASES LIQ, V5
[8]   Design of Hydrophilic Metal Organic Framework Water Adsorbents for Heat Reallocation [J].
Cadiau, Amandine ;
Lee, Ji Sun ;
Borges, Daiane Damasceno ;
Fabry, Paul ;
Devic, Thomas ;
Wharmby, Michael T. ;
Martineau, Charlotte ;
Foucher, Damien ;
Taulelle, Francis ;
Jun, Chul-Ho ;
Hwang, Young Kyu ;
Stock, Norbert ;
De Lange, Martijn F. ;
Kapteijn, Freek ;
Gascon, Jorge ;
Maurin, Guillaume ;
Chang, Jong-San ;
Serre, Christian .
ADVANCED MATERIALS, 2015, 27 (32) :4775-4780
[9]  
Deb K., 2000, Parallel Problem Solving from Nature PPSN VI. 6th International Conference. Proceedings (Lecture Notes in Computer Science Vol.1917), P849
[10]   The swing adsorption reactor cluster (SARC) for post combustion CO2 capture: Experimental proof-of-principle [J].
Dhoke, Chaitanya ;
Zaabout, Abdelghafour ;
Cloete, Schalk ;
Seo, Hwimin ;
Park, Yong-ki ;
Blom, Richard ;
Amini, Shahriar .
CHEMICAL ENGINEERING JOURNAL, 2019, 377