共 61 条
Advances in Spatial Econometrics: Parametric vs. Semiparametric Spatial Autoregressive Models
被引:10
作者:
Basile, Roberto
[1
]
Minguez, Roman
[2
]
机构:
[1] Univ Campania Luigi Vanvitelli, Dept Econ, Corso Gran Priorato Malta,1, I-81043 Capua, CE, Italy
[2] Univ Castilla La Mancha, Cuenca, Spain
来源:
ECONOMY AS A COMPLEX SPATIAL SYSTEM: MACRO, MESO AND MICRO PERSPECTIVES
|
2018年
关键词:
Spatial econometrics;
Semiparametric models;
DYNAMIC PANEL-DATA;
GEOGRAPHICALLY WEIGHTED REGRESSION;
MAXIMUM LIKELIHOOD ESTIMATORS;
DEPENDENCE;
HETEROGENEITY;
FRAMEWORK;
INFERENCE;
WEAK;
D O I:
10.1007/978-3-319-65627-4_4
中图分类号:
F [经济];
学科分类号:
02 ;
摘要:
In this Chapter we provide a critical review of parametric and semi-parametric spatial econometric approaches. We focus on the capability of each class of models to fit the main features of spatial data (such as strong and weak cross-sectional dependence, spatial heterogeneity, nonlinearities, and time persistence), leaving aside the technicalities related to the estimation methods. We also provide a brief discussion of the existent software developed to estimate most of the econometric models exposed in this Chapter.
引用
收藏
页码:81 / 106
页数:26
相关论文