Stability of the magnetic Schrodinger operator in a waveguide

被引:38
作者
Ekholm, T [1 ]
Kovarík, H
机构
[1] Univ Stuttgart, Fac Math & Phys, D-75069 Stuttgart, Germany
[2] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
关键词
hardy inequality; magnetic field; Schrodinger operator;
D O I
10.1081/PDE-200050113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The spectrum of the Schrodinger operator in a quantum waveguide is known to be unstable in two and three dimensions. Any local enlargement of the waveguide produces eigenvalues beneath the continuous spectrum. Also, if the waveguide is bent, eigenvalues will arise below the continuous spectrum. In this paper a magnetic field is added into the system. The spectrum of the magnetic Schrodinger operator is proved to be stable under small local deformations and also under small bending of the waveguide. The proof includes a magnetic Hardy-type inequality in the waveguide, which is interesting in its own right.
引用
收藏
页码:539 / 565
页数:27
相关论文
共 22 条
[1]   SCHRODINGER OPERATORS WITH MAGNETIC-FIELDS .1. GENERAL INTERACTIONS [J].
AVRON, J ;
HERBST, I ;
SIMON, B .
DUKE MATHEMATICAL JOURNAL, 1978, 45 (04) :847-883
[2]   Generalized Hardy inequality for the magnetic Dirichlet forms [J].
Balinsky, A ;
Laptev, A ;
Sobolev, AV .
JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) :507-521
[3]  
Balinsky AA, 2003, MATH RES LETT, V10, P169
[4]  
BALINSKY AA, 00405 MPARC
[5]  
Birman M. Sh., 1992, AM MATH SOC TRANSL 2, V150, P1
[6]  
Birman M. Sh., 1987, SPECTRAL THEORY SELF
[7]   BOUND-STATES OF WEAKLY COUPLED LONG-RANGE ONE-DIMENSIONAL QUANTUM HAMILTONIANS [J].
BLANKENBECLER, R ;
GOLDBERGER, ML ;
SIMON, B .
ANNALS OF PHYSICS, 1977, 108 (01) :69-78
[8]   Bound states in weakly deformed strips and layers [J].
Borisov, D ;
Exner, P ;
Gadyl'shin, R ;
Krejcirík, D .
ANNALES HENRI POINCARE, 2001, 2 (03) :553-572
[9]   Weakly coupled bound states in quantum waveguides [J].
Bulla, W ;
Gesztesy, F ;
Renger, W ;
Simon, B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (05) :1487-1495
[10]   CURVATURE-INDUCED BOUND-STATES IN QUANTUM WAVE-GUIDES IN 2-DIMENSIONS AND 3-DIMENSIONS [J].
DUCLOS, P ;
EXNER, P .
REVIEWS IN MATHEMATICAL PHYSICS, 1995, 7 (01) :73-102