Optimal control of a vector borne disease with horizontal transmission

被引:63
作者
Lashari, Abid Ali [1 ]
Zaman, Gul [2 ]
机构
[1] Natl Univ Sci & Technol, Ctr Adv Math & Phys, Islamabad, Pakistan
[2] Univ Malakand, Dept Math, Khyber Pukhtoonkhwa, Pakistan
关键词
Epidemic model; Optimal control; Pontryagin's Maximum Principle; Numerical simulation; BACKWARD BIFURCATION; DENGUE-DISEASE; MODEL; DYNAMICS;
D O I
10.1016/j.nonrwa.2011.07.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper presents the optimal control applied to a vector borne disease with direct transmission in host population. First, we show the existence of the control problem and then use both analytical and numerical techniques to investigate that there are cost effective control efforts for prevention of direct and indirect transmission of disease. In order to do this three control functions are used, one for vector-reduction strategies and the other two for personal (human) protection and blood screening, respectively. We completely characterize the optimal control and compute the numerical solution of the optimality system using an iterative method. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:203 / 212
页数:10
相关论文
共 21 条
[1]  
[Anonymous], 2002, Dengue and Dengue Haemorrhagic Fever
[2]   OPTIMAL CONTROL OF VECTOR-BORNE DISEASES: TREATMENT AND PREVENTION [J].
Blayneh, Kbenesh ;
Cao, Yanzhao ;
Kwon, Hee-Dae .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 11 (03) :587-611
[3]   Backward Bifurcation and Optimal Control in Transmission Dynamics of West Nile Virus [J].
Blayneh, Kbenesh W. ;
Gumel, Abba B. ;
Lenhart, Suzanne ;
Clayton, Tim .
BULLETIN OF MATHEMATICAL BIOLOGY, 2010, 72 (04) :1006-1028
[4]   Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue [J].
Coutinho, F. A. B. ;
Burattini, M. N. ;
Lopez, L. F. ;
Massad, E. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2006, 68 (08) :2263-2282
[5]   A model for dengue disease with variable human population [J].
Esteva, L ;
Vargas, C .
JOURNAL OF MATHEMATICAL BIOLOGY, 1999, 38 (03) :220-240
[6]   Analysis of a Dengue disease transmission model [J].
Esteva, L ;
Vargas, C .
MATHEMATICAL BIOSCIENCES, 1998, 150 (02) :131-151
[7]   Competitive exclusion in a vector-host model for the Dengue fever [J].
Feng, ZL ;
VelascoHernandez, JX .
JOURNAL OF MATHEMATICAL BIOLOGY, 1997, 35 (05) :523-544
[8]  
Garrett Birkhoff, 1989, Ordinary Differential Equations
[9]   NUMERICAL-METHOD FOR SOLVING PARABOLIC EQUATIONS WITH OPPOSITE ORIENTATIONS [J].
HACKBUSCH, W .
COMPUTING, 1978, 20 (03) :229-240
[10]   Scientific consultation on immunological correlates of protection induced by dengue vaccines - Report from a meeting held at the World Health Organization 17-18 November 2005 [J].
Hombach, Joachim ;
Cardosa, M. Jane ;
Sabehareon, Arunee ;
Vaughn, David W. ;
Barrett, Alan D. T. .
VACCINE, 2007, 25 (21) :4130-4139