Optimization of synthesis condition for CO2 hydrogenation to light olefins over In2O3 admixed with SAPO-34

被引:90
作者
Numpilai, Thanapa [1 ,2 ]
Wattanakit, Chularat [3 ]
Chareonpanich, Metta [1 ,2 ]
Limtrakul, Jumras [4 ]
Witoon, Thongthai [1 ,2 ,4 ]
机构
[1] Kasetsart Univ, Ctr Excellence Petrochem & Mat Technol, Dept Chem Engn, Fac Engn, Bangkok 10900, Thailand
[2] Kasetsart Univ, Res Network NANOTEC KU NanoCatalysts & NanoMat Su, Bangkok 10900, Thailand
[3] Vidyasirimedhi Inst Sci & Technol, Dept Chem & Biomol Engn, Sch Energy Sci & Engn, Rayong 21210, Thailand
[4] Vidyasirimedhi Inst Sci & Technol, Dept Mat Sci & Engn, Sch Mol Sci & Engn, Rayong 21210, Thailand
关键词
Hydrogenation; Carbon dioxide; Light olefins; Methanol; SAPO-34; COKE-OVEN GAS; CARBON-DIOXIDE; BIFUNCTIONAL CATALYSTS; THERMODYNAMIC ANALYSES; CUO-ZNO-ZRO2; CATALYST; PROPYLENE PRODUCTION; DIRECT CONVERSION; DIMETHYL ETHER; METHANOL; SYNGAS;
D O I
10.1016/j.enconman.2018.11.011
中图分类号
O414.1 [热力学];
学科分类号
摘要
Recycling of CO2 into light olefins offers opportunity to mitigate CO2 emissions, while decreasing dependence on fossil fuels for light olefins production. Herein, we report on the direct conversion of CO2 to light olefins over a hybrid catalyst containing In2O3 admixed with SAPO-34. The effect of mass ratios of In2O3 to SAPO-34 and operating conditions including reaction temperature, reaction pressure and space velocity for maximizing light olefins yield was thoroughly studied. The results show that the interplay of active sites for CO2 hydrogenation (In2O3) and methanol transformation (SAPO-34), and operating conditions are a key factor determining the catalytic behavior. The best yield of light olefins (7.31%) with a CO2 conversion of 34.6% is achieved over the In2O3/SAPO-34 catalyst with a mass ratio of 2:1 at 360 degrees C, 25 bar and 1,500 mL g(cat)(-1) h(-1).
引用
收藏
页码:511 / 523
页数:13
相关论文
共 44 条
[1]   Carbon Capture and Utilization Update [J].
Al-Mamoori, Ahmed ;
Krishnamurthy, Anirudh ;
Rownaghi, Ali A. ;
Rezaei, Fateme .
ENERGY TECHNOLOGY, 2017, 5 (06) :834-849
[2]   Thermodynamic analysis of methane dry reforming: Effect of the catalyst particle size on carbon formation [J].
Aramouni, Nicolas Abdel Karim ;
Zeaiter, Joseph ;
Kwapinski, Witold ;
Ahmad, Mohammad N. .
ENERGY CONVERSION AND MANAGEMENT, 2017, 150 :614-622
[3]   Hydrogen on In2O3: Reducibility, Bonding, Defect Formation, and Reactivity [J].
Bielz, Thomas ;
Lorenz, Harald ;
Jochum, Wilfrid ;
Kaindl, Reinhard ;
Klauser, Frederik ;
Kloetzer, Bernhard ;
Penner, Simon .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (19) :9022-9029
[4]   The role of catalyst environment on CO2 hydrogenation in a fixed-bed reactor [J].
Bradley, Matthew J. ;
Ananth, Ramagopal ;
Willauer, Heather D. ;
Baldwin, Jeffrey W. ;
Hardy, Dennis R. ;
DiMascio, Felice ;
Williams, Frederick W. .
JOURNAL OF CO2 UTILIZATION, 2017, 17 :1-9
[5]   Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process [J].
Chen, JQ ;
Bozzano, A ;
Glover, B ;
Fuglerud, T ;
Kvisle, S .
CATALYSIS TODAY, 2005, 106 (1-4) :103-107
[6]   Thermodynamic analyses and optimizations of extraction process of CO2 from acidic seawater by using hollow fiber membrane contactor [J].
Chen, Lingen ;
Wang, Chao ;
Xia, Shaojun ;
Sun, Fengrui .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 124 :1310-1320
[7]   Entropy generation minimization for CO2 hydrogenation to light olefins [J].
Chen, Lingen ;
Zhang, Lei ;
Xia, Shaojun ;
Sun, Fengrui .
ENERGY, 2018, 147 :187-196
[8]   Thermodynamic analyses for recovering residual heat of high-temperature basic oxygen gas (BOG) by the methane reforming with carbon dioxide reaction [J].
Chen, Lingen ;
Shen, Xun ;
Xia, Shaojun ;
Sun, Fengrui .
ENERGY, 2017, 118 :906-913
[9]  
Dooley JJ, 2009, DEAC0576RL01830
[10]   SAPO-18 and SAPO-34 catalysts for propylene production from the oligomerization-cracking of ethylene or 1-butene [J].
Epelde, Eva ;
Ibanez, Maria ;
Valecillos, Jose ;
Aguayo, Andres T. ;
Gayubo, Ana G. ;
Bilbao, Javier ;
Castano, Pedro .
APPLIED CATALYSIS A-GENERAL, 2017, 547 :176-182