Machine learning for the prediction of heavy metal removal by chitosan-based flocculants
被引:36
|
作者:
Lu, Chun
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Coll Environm Sci & Engn, Shanghai 200092, Peoples R ChinaTongji Univ, Coll Environm Sci & Engn, Shanghai 200092, Peoples R China
Lu, Chun
[1
]
Xu, Zuxin
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Coll Environm Sci & Engn, Shanghai 200092, Peoples R ChinaTongji Univ, Coll Environm Sci & Engn, Shanghai 200092, Peoples R China
Xu, Zuxin
[1
]
Dong, Bin
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Coll Environm Sci & Engn, Shanghai 200092, Peoples R ChinaTongji Univ, Coll Environm Sci & Engn, Shanghai 200092, Peoples R China
Dong, Bin
[1
]
Zhang, Yunhui
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Coll Environm Sci & Engn, Shanghai 200092, Peoples R ChinaTongji Univ, Coll Environm Sci & Engn, Shanghai 200092, Peoples R China
Zhang, Yunhui
[1
]
Wang, Mei
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Coll Environm Sci & Engn, Shanghai 200092, Peoples R ChinaTongji Univ, Coll Environm Sci & Engn, Shanghai 200092, Peoples R China
Wang, Mei
[1
]
Zeng, Yifan
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Coll Environm Sci & Engn, Shanghai 200092, Peoples R ChinaTongji Univ, Coll Environm Sci & Engn, Shanghai 200092, Peoples R China
Zeng, Yifan
[1
]
Zhang, Chen
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Municipal Engn Design Inst Grp Co Ltd, Shanghai 200092, Peoples R ChinaTongji Univ, Coll Environm Sci & Engn, Shanghai 200092, Peoples R China
Zhang, Chen
[2
]
机构:
[1] Tongji Univ, Coll Environm Sci & Engn, Shanghai 200092, Peoples R China
[2] Shanghai Municipal Engn Design Inst Grp Co Ltd, Shanghai 200092, Peoples R China
Heavy metal removal;
Chitosan-based flocculants;
Flocculation;
Machine learning;
Prediction;
WASTE-WATER TREATMENT;
COAGULANT-FLOCCULANT;
ORGANIC-MATTER;
IONS;
PERFORMANCE;
PH;
TETRACYCLINE;
ANTIBIOTICS;
COPPER(II);
IRON;
D O I:
10.1016/j.carbpol.2022.119240
中图分类号:
O69 [应用化学];
学科分类号:
081704 ;
摘要:
The use of chitosan-based flocculants (CBFs) to remove dissolved heavy metals from wastewater is widely advocated. This study applied machine learning (ML) methods to develop a prediction model for the efficiency of heavy metals removal using CBFs. The random forest (RF) models could accurately predict the removal efficiency of heavy metals (R2 = 0.9354, RMSE = 5.67) according to flocculant properties, flocculation conditions, and heavy metal properties. The solution pH (pHsol) in flocculation conditions and the molecular weight (Mv) in flocculant properties were identified as the most dominant parameters in flocculation performance with feature importance weights of 0.294 and 0.134, respectively. The partial dependence analysis showed the impact way of each influential factor and their combined effects on the heavy metal removal efficiency using CBFs. Overall, a prediction model was successfully developed for the efficiency of heavy metals removal, which will guide rational applications of CBFs for the treatment of wastewater containing heavy metals.
机构:
College of Urban Construction, Nanjing Tech UniversityCollege of Urban Construction, Nanjing Tech University
Xuefeng Xiao
Yuanyuan Yu
论文数: 0引用数: 0
h-index: 0
机构:
College of Urban Construction, Nanjing Tech UniversityCollege of Urban Construction, Nanjing Tech University
Yuanyuan Yu
Yongjun Sun
论文数: 0引用数: 0
h-index: 0
机构:
College of Urban Construction, Nanjing Tech UniversityCollege of Urban Construction, Nanjing Tech University
Yongjun Sun
Xing Zheng
论文数: 0引用数: 0
h-index: 0
机构:
Department of Civil and Environmental Engineering, The Hong Kong University of Science and TechnologyCollege of Urban Construction, Nanjing Tech University
Xing Zheng
Aowen Chen
论文数: 0引用数: 0
h-index: 0
机构:
College of Urban Construction, Nanjing Tech UniversityCollege of Urban Construction, Nanjing Tech University
机构:
Nanjing Tech Univ, Coll Urban Construct, Nanjing 211800, Peoples R ChinaNanjing Tech Univ, Coll Urban Construct, Nanjing 211800, Peoples R China
Xiao, Xuefeng
Yu, Yuanyuan
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Tech Univ, Coll Urban Construct, Nanjing 211800, Peoples R ChinaNanjing Tech Univ, Coll Urban Construct, Nanjing 211800, Peoples R China
Yu, Yuanyuan
Sun, Yongjun
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Tech Univ, Coll Urban Construct, Nanjing 211800, Peoples R ChinaNanjing Tech Univ, Coll Urban Construct, Nanjing 211800, Peoples R China
Sun, Yongjun
Zheng, Xing
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Hong Kong 999077, Peoples R ChinaNanjing Tech Univ, Coll Urban Construct, Nanjing 211800, Peoples R China
Zheng, Xing
Chen, Aowen
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Tech Univ, Coll Urban Construct, Nanjing 211800, Peoples R ChinaNanjing Tech Univ, Coll Urban Construct, Nanjing 211800, Peoples R China
Chen, Aowen
JOURNAL OF ENVIRONMENTAL SCIENCES,
2021,
108
: 22
-
32
机构:
Univ S Africa, Coll Sci Engn & Technol, Nanotechnol & Water Sustainabil Res Unit, Florida Campus, Johannesburg, South AfricaUniv S Africa, Coll Sci Engn & Technol, Nanotechnol & Water Sustainabil Res Unit, Florida Campus, Johannesburg, South Africa
Vunain, E.
Mishra, A. K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ S Africa, Coll Sci Engn & Technol, Nanotechnol & Water Sustainabil Res Unit, Florida Campus, Johannesburg, South AfricaUniv S Africa, Coll Sci Engn & Technol, Nanotechnol & Water Sustainabil Res Unit, Florida Campus, Johannesburg, South Africa
Mishra, A. K.
Mamba, B. B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ S Africa, Coll Sci Engn & Technol, Nanotechnol & Water Sustainabil Res Unit, Florida Campus, Johannesburg, South AfricaUniv S Africa, Coll Sci Engn & Technol, Nanotechnol & Water Sustainabil Res Unit, Florida Campus, Johannesburg, South Africa