Hard polymeric porous microneedles on stretchable substrate for transdermal drug delivery

被引:59
作者
Sadeqi, Aydin [1 ,2 ]
Kiaee, Gita [1 ]
Zeng, Wenxin [1 ,2 ]
Nejad, Hojatollah Rezaei [1 ,3 ]
Sonkusale, Sameer [1 ,2 ]
机构
[1] Tufts Univ, Nano Lab, Adv Technol Lab, 200 Boston Ave, Medford, MA 02155 USA
[2] Tufts Univ, Dept Elect & Comp Engn, 161 Coll Ave, Medford, MA 02155 USA
[3] Anodyne Nanotech Inc, 38 Wareham St, Boston, MA 02118 USA
基金
美国国家科学基金会;
关键词
OF-PLANE MICRONEEDLES; VACCINE DELIVERY; FABRICATION; SKIN; LITHOGRAPHY; PATCHES; ARRAYS; HYDROCHLORIDE; COMPOSITE;
D O I
10.1038/s41598-022-05912-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microneedles offer a convenient transdermal delivery route with potential for long term sustained release of drugs. However current microneedle technologies may not have the mechanical properties for reliable and stable penetration (e.g. hydrogel microneedles). Moreover, it is also challenging to realize microneedle arrays with large size and high flexibility. There is also an inherent upper limit to the amount and kind of drugs that can be loaded in the microneedles. In this paper, we present a new class of polymeric porous microneedles made from biocompatible and photo-curable resin that address these challenges. The microneedles are unique in their ability to load solid drug formulation in concentrated form. We demonstrate the loading and release of solid formulation of anesthetic and non-steroidal anti-inflammatory drugs, namely Lidocaine and Ibuprofen. Paper also demonstrates realization of large area (6 x 20 cm(2)) flexible and stretchable microneedle patches capable of drug delivery on any body part. Penetration studies were performed in an ex vivo porcine model supplemented through rigorous compression tests to ensure the robustness and rigidity of the microneedles. Detailed release profiles of the microneedle patches were shown in an in vitro skin model. Results show promise for large area transdermal delivery of solid drug formulations using these porous microneedles.
引用
收藏
页数:10
相关论文
共 86 条
[1]  
Allen M., 2002, U.S. Patent Application, Patent No. [10/010,723, 10010723]
[2]   TRANSDERMAL DELIVERY OF PEPTIDE AND PROTEIN DRUGS - AN OVERVIEW [J].
AMSDEN, BG ;
GOOSEN, MFA .
AICHE JOURNAL, 1995, 41 (08) :1972-1997
[3]   Dissolvable Microneedle Arrays for Intradermal Delivery of Biologics: Fabrication and Application [J].
Bediz, Bekir ;
Korkmaz, Emrullah ;
Khilwani, Rakesh ;
Donahue, Cara ;
Erdos, Geza ;
Falo, Louis D., Jr. ;
Ozdoganlar, O. Burak .
PHARMACEUTICAL RESEARCH, 2014, 31 (01) :117-135
[4]   Micromolding for ceramic microneedle arrays [J].
Bystrova, S. ;
Luttge, R. .
MICROELECTRONIC ENGINEERING, 2011, 88 (08) :1681-1684
[5]   Metallic microneedles with interconnected porosity: A scalable platform for biosensing and drug delivery [J].
Cahill, Ellen M. ;
Keaveney, Shane ;
Stuettgen, Vivien ;
Eberts, Paulina ;
Ramos-Luna, Pamela ;
Zhang, Nan ;
Dangol, Manita ;
O'Cearbhaill, Eoin D. .
ACTA BIOMATERIALIA, 2018, 80 :401-411
[6]   Self-setting bioceramic microscopic protrusions for transdermal drug delivery [J].
Cai, Bing ;
Xia, Wei ;
Bredenberg, Susanne ;
Engqvist, Hakan .
JOURNAL OF MATERIALS CHEMISTRY B, 2014, 2 (36) :5992-5998
[7]   Photocatalytic decomposition of pharmaceutical ibuprofen pollutions in water over titania catalyst [J].
Choina, J. ;
Kosslick, H. ;
Fischer, Ch. ;
Flechsig, G. -U. ;
Frunza, L. ;
Schulz, A. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 129 :589-598
[8]   Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force [J].
Davis, SP ;
Landis, BJ ;
Adams, ZH ;
Allen, MG ;
Prausnitz, MR .
JOURNAL OF BIOMECHANICS, 2004, 37 (08) :1155-1163
[9]   Characterization of Polymeric Microneedle Arrays for Transdermal Drug Delivery [J].
Demir, Yusuf K. ;
Akan, Zafer ;
Kerimoglu, Oya .
PLOS ONE, 2013, 8 (10)
[10]   Vaccine delivery with microneedle skin patches in nonhuman primates [J].
DeMuth, Peter C. ;
Li, Adrienne V. ;
Abbink, Peter ;
Liu, Jinyan ;
Li, Hualin ;
Stanley, Kelly A. ;
Smith, Kaitlin M. ;
Lavine, Christy L. ;
Seaman, Michael S. ;
Kramer, Joshua A. ;
Miller, Andrew D. ;
Abraham, Wuhbet ;
Suh, Heikyung ;
Elkhader, Jamal ;
Hammond, Paula T. ;
Barouch, Dan H. ;
Irvine, Darrell J. .
NATURE BIOTECHNOLOGY, 2013, 31 (12) :1082-1085