The fractional version of Hedetniemi's conjecture is true

被引:33
|
作者
Zhu, Xuding [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua, Peoples R China
关键词
CHROMATIC NUMBER; GRAPHS; PRODUCT;
D O I
10.1016/j.ejc.2011.03.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proves that the fractional version of Hedetniemi's conjecture is true. Namely, for any graphs G and H, chi(f) (G x H) = min {chi(f)(G), chi(f)(H)}. As a by-product, we obtain a proof of the Burr-Erdos-Lovasz conjecture: For any positive integer n, there exists an n-chromatic graph G whose chromatic Ramsey number equals (n - 1)(2) + 1. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1168 / 1175
页数:8
相关论文
共 50 条