Hydrogen thermal reductive Cu nanowires in low temperature Cu-Cu bonding

被引:9
作者
Du, Li [1 ]
Shi, Tielin [1 ]
Su, Lei [2 ]
Tang, Zirong [1 ]
Liao, Guanglan [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Hubei, Peoples R China
[2] Jiangnan Univ, Sch Mech Engn, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Cu nanowires; decomposition; reduction; sintering; Cu-Cu bonding; COPPER NANOWIRES; ARRAYS; SI;
D O I
10.1088/1361-6439/aa74fb
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nanostructures have attracted great interest in interconnect applications. Herein, we present a novel low temperature, template-less method for directly preparing Cu nanowires through a hydrogen thermal decomposition-reduction route of Cu(OH)(2) -> CuO -> Cu. The thermal treatments are performed at relatively low temperatures of 180 degrees C-200 degrees C to meet the low thermal budget in the semiconductor industry. Cu(OH)(2) nanowires are completely transformed into Cu nanowires and the morphologies of the nanowires are successfully preserved without shrinkage of volume and size. Sintering of Cu nanowires occurs at a low temperature of 400 degrees C in Ar ambient and 350 degrees C in H-2 ambient, respectively. Based on this phenomenon, we innovatively apply the as-synthesized Cu nanowires in Cu-Cu bonding at 150 degrees C-400 degrees C. The bonded samples exhibit high shear strengths where Cu nanowires have transformed into Cu nanoparticles, mainly attributed to the enhanced atom diffusion with the existence of nanowires. The present work demonstrates the feasibility of hydrogen thermal reductive Cu nanowires in low temperature Cu-Cu bonding.
引用
收藏
页数:9
相关论文
共 30 条
[1]   3-D Stacked Package Technology and Trends [J].
Carson, Flynn P. ;
Kim, Young Cheol ;
Yoon, In Sang .
PROCEEDINGS OF THE IEEE, 2009, 97 (01) :31-42
[2]   Large-scale synthesis of high-quality ultralong copper nanowires [J].
Chang, Y ;
Lye, ML ;
Zeng, HC .
LANGMUIR, 2005, 21 (09) :3746-3748
[3]   Low temperature thermocompression bonding between aligned carbon nanotubes and metallized substrate [J].
Chen, M. X. ;
Song, X. H. ;
Gan, Z. Y. ;
Liu, S. .
NANOTECHNOLOGY, 2011, 22 (34)
[4]   Device scaling limits of Si MOSFETs and their application dependencies [J].
Frank, DJ ;
Dennard, RH ;
Nowak, E ;
Solomon, PM ;
Taur, Y ;
Wong, HSP .
PROCEEDINGS OF THE IEEE, 2001, 89 (03) :259-288
[5]   Electrochemical synthesis of copper nanowires [J].
Gao, T ;
Meng, GW ;
Wang, YW ;
Sun, SH ;
Zhang, L .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (03) :355-363
[6]   Evolutional Transformation of Copper Oxide Nanowires to Copper Nanowires by a Reduction Technique [J].
Han, Jin-Woo ;
Lohn, Andrew ;
Kobayashi, Nobuhiko P. ;
Meyyappan, M. .
MATERIALS EXPRESS, 2011, 1 (02) :176-180
[7]   Three-dimensionally grown thorn-like Cu nanowire arrays by fully electrochemical nanoengineering for highly enhanced hydrazine oxidation [J].
Huang, Jianfei ;
Zhao, Shunan ;
Chen, Wei ;
Zhou, Ying ;
Yang, Xiaoling ;
Zhu, Yihua ;
Li, Chunzhong .
NANOSCALE, 2016, 8 (11) :5810-5814
[8]   Metal-metal bonding process using Ag metallo-organic nanoparticles [J].
Ide, E ;
Angata, S ;
Hirose, A ;
Kobayashi, KF .
ACTA MATERIALIA, 2005, 53 (08) :2385-2393
[9]   A novel interconnection technique for manufacturing nanowire devices [J].
Islam, MS ;
Sharma, S ;
Kamins, TI ;
Williams, RS .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2005, 80 (06) :1133-1140
[10]   Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics [J].
Javey, Ali ;
Nam, SungWoo ;
Friedman, Robin S. ;
Yan, Hao ;
Lieber, Charles M. .
NANO LETTERS, 2007, 7 (03) :773-777