Potential of plant growth-promoting rhizobacteria-plant interactions in mitigating salt stress for sustainable agriculture: A review

被引:73
|
作者
Kumawat, Kailash Chand [1 ]
Nagpal, Sharon [1 ]
Sharma, Poonam [2 ]
机构
[1] Punjab Agr Univ, Dept Microbiol, Ludhiana 141004, Punjab, India
[2] Punjab Agr Univ, Dept Plant Breeding & Genet, Ludhiana 141004, Punjab, India
关键词
antagonistic activities; antioxidant enzymes; benefical microbes; osmotolerance; rhizosphere microbiome; salt tolerance; sustainable agriculture; WHEAT TRITICUM-AESTIVUM; DEAMINASE PRODUCING PGPR; BRASSICA-NAPUS L; ZEA-MAYS L; ACC-DEAMINASE; SALINITY STRESS; ENDOPHYTIC BACTERIA; PSEUDOMONAS-PUTIDA; OSMOTIC-STRESS; SOIL-SALINITY;
D O I
10.1016/S1002-0160(21)60070-X
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Soil salinization affecting different crops is one of the serious threats to global food security. Soil salinity affects 20% and 33% of the total cultivated and irrigated agricultural lands, respectively, and has been reported to caused a global crop production loss of 27.3 billion USD. The conventional approaches, such as using salt-tolerant varieties, saline soil scrapping, flushing, leaching, and adding supplements (e.g., gypsum and lime), often fail to alleviate stress. In this context, developing diverse arrays of microbes enhancing crop productivity under saline soil conditions without harming soil health is necessary. Various advanced omics approaches have enabled gaining new insights into the structure and metabolic functions of plant-associated beneficial microbes. Various genera of salt-tolerating rhizobacteria ameliorating biotic and abiotic stresses have been isolated from different legumes, cereals, vegetables, and oil seeds under extreme alkaline and saline soil conditions. Rapid progress in rhizosphere microbiome research has revived the belief that plants may be more benefited from their association with interacting diverse microbial communities as compared with individual members in a community. In the last decade, several salt-tolerating plant growth-promoting rhizobacteria (PGPR) that improve crop production under salt stress have been exploited for the reclamation of saline agrosystems. This review highlights that the interaction of salt-tolerating microbes with plants improves crop productivity under salinity stress along with potential salt tolerance mechanisms involved and will open new avenues for capitalizing on cultivable diverse microbial communities to strengthen plant salt tolerance and, thus, to refine agricultural practices and production under saline conditions.
引用
收藏
页码:223 / 245
页数:23
相关论文
共 50 条
  • [21] Beneficial microorganisms in agriculture: the future of plant growth-promoting rhizobacteria
    Reis, Veronica M.
    Alves, Bruno J. R.
    Hartmann, Anton
    James, Euan K.
    Zilli, Jerri E.
    PLANT AND SOIL, 2020, 451 (1-2) : 1 - 3
  • [22] A Bibliometric Review of Plant Growth-Promoting Rhizobacteria in Salt-Affected Soils
    Ma, Xixi
    Pan, Jing
    Xue, Xian
    Zhang, Jun
    Guo, Qi
    AGRONOMY-BASEL, 2022, 12 (10):
  • [23] BIOTECHNOLOGICAL POTENTIAL OF SOYBEAN PLANT GROWTH-PROMOTING RHIZOBACTERIA
    de Paula, Gabriel Ferreira
    Demetrio, Gilberto Bueno
    Matsumoto, Leopoldo Sussumu
    REVISTA CAATINGA, 2021, 34 (02) : 328 - 338
  • [24] The Role of Plant Growth-Promoting Rhizobacteria (PGPR) in Mitigating Plant's Environmental Stresses
    Vocciante, Marco
    Grifoni, Martina
    Fusini, Danilo
    Petruzzelli, Gianniantonio
    Franchi, Elisabetta
    APPLIED SCIENCES-BASEL, 2022, 12 (03):
  • [25] Promoting sustainable agriculture by exploiting plant growth-promoting rhizobacteria (PGPR) to improve maize and cowpea crops
    Agbodjato, Nadege Adouke
    Babalola, Olubukola Oluranti
    PEERJ, 2024, 12
  • [26] Promoting sustainable agriculture by exploiting plant growth-promoting rhizobacteria (PGPR) to improve maize and cowpea crops
    Agbodjato, Nadege Adouke
    Babalola, Olubukola Oluranti
    PEERJ, 2024, 12
  • [27] Plant growth-promoting rhizobacteria (PGPR) and its mechanisms against plant diseases for sustainable agriculture and better productivity
    Dutta, Pranab
    Muthukrishnan, Gomathy
    Gopalasubramaiam, Sabarinathan Kutalingam
    Dharmaraj, Rajakumar
    Karuppaiah, Ananthi
    Loganathan, Karthiba
    Periyasamy, Kalaiselvi
    Pillai, M. Arumugam
    Upamanya, G. K.
    Boruah, Sarodee
    Deb, Lipa
    Kumari, Arti
    Mahanta, Madhusmita
    Heisnam, Punabati
    Mishra, A. K.
    BIOCELL, 2022, 46 (08) : 1843 - 1859
  • [28] Growth and protein response of rice plant with plant growth-promoting rhizobacteria inoculations under salt stress conditions
    Chompa, Sayma Serine
    Zuan, Ali Tan Kee
    Amin, Adibah Mohd
    Hun, Tan Geok
    Ghazali, Amir Hamzah Ahmad
    Sadeq, Buraq Musa
    Akter, Amaily
    Rahman, Md Ekhlasur
    Rashid, Harun Or
    INTERNATIONAL MICROBIOLOGY, 2024, 27 (04) : 1151 - 1168
  • [29] A comprehensive evaluation of the potential of plant growth-promoting rhizobacteria for applications in agriculture in stressed environments
    Rafique, Naila
    Khalil, Sadia
    Cardinale, Massimiliano
    Rasheed, Aysha
    Zhao, Fengliang
    Abideen, Zainul
    PEDOSPHERE, 2025, 35 (01) : 229 - 248
  • [30] A comprehensive evaluation of the potential of plant growth-promoting rhizobacteria for applications in agriculture in stressed environments
    Naila RAFIQUE
    Sadia KHALIL
    Massimiliano CARDINALE
    Aysha RASHEED
    Fengliang ZHAO
    Zainul ABIDEEN
    Pedosphere, 2025, 35 (01) : 229 - 248