Thermal Management in Long-Wavelength Flip-Chip Semiconductor Disk Lasers

被引:5
作者
Rantamaki, Antti [1 ]
Saarinen, Esa J. [1 ]
Lyytikainen, Jari [1 ]
Heikkinen, Juuso [1 ]
Kontio, Juha M. [1 ]
Lahtonen, Kimmo [1 ]
Valden, Mika [1 ]
Okhotnikov, Oleg G. [1 ]
机构
[1] Tampere Univ Technol, Tampere 33720, Finland
基金
芬兰科学院;
关键词
Distributed Bragg reflector (DBR); flip-chip; semiconductor disk laser (SDL); thermal management; vertical-external-cavity surface-emitting laser (VECSEL); V-COMPOUND SEMICONDUCTORS; SATURABLE-ABSORBER MIRROR; VERTICAL-CAVITY LASERS; LOW-TEMPERATURE; OUTPUT POWER; SURFACE; NM; EFFICIENCY; VECSEL; PERFORMANCE;
D O I
10.1109/JSTQE.2015.2420599
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We address the thermal management of flip-chip semiconductor disk lasers (SDLs) emitting at wavelengths 1.3-1.6 mu m. The emphasis of the study is on fabricating thin SDL structures with high thermal conductance. An essential part of this task is to use GaAs-basedmaterials in the distributed Bragg reflector (DBR), because they can provide a combination of high thermal conductivity and high refractive index contrast. Furthermore, the reflectivity of the GaAs-based DBR should preferably be enhanced using a thin dielectric layer and a highly reflectingmetal layer. Such a configuration enables very thin mirror structures with a reduced number of DBR layer pairs without compromising the reflectivity. The concept is demonstrated experimentally with a 1.32-mu m flip-chip SDL, where the GaAs-based DBR is finished with a thin Al2O3 layer and a highly reflective Al layer. In addition, the design principles, thermal management, and the development issues related to semiconductor-dielectric-metal mirrors in 1.3-1.6-mu m flip-chip SDLs are discussed.
引用
收藏
页码:336 / 342
页数:7
相关论文
共 63 条
[1]   Wafer bonding of different III-V compound semiconductors by atomic hydrogen surface cleaning [J].
Akatsu, T ;
Plössl, A ;
Scholz, R ;
Stenzel, H ;
Gösele, U .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (08) :3856-3862
[2]   GaAs wafer bonding by atomic hydrogen surface cleaning [J].
Akatsu, T ;
Plössl, A ;
Stenzel, H ;
Gösele, U .
JOURNAL OF APPLIED PHYSICS, 1999, 86 (12) :7146-7150
[3]  
[Anonymous], 2015, INTR VERD G10 TECHN
[4]  
[Anonymous], 2014, ADV LAS DIOD OPSL TE
[5]  
Arrigoni M., 2009, LASER FOCUS WORLD, V45
[6]   OPTICALLY PUMPED ALL-EPITAXIAL WAFER-FUSED 1.52 MU-M VERTICAL-CAVITY LASERS [J].
BABIC, DI ;
DUDLEY, JJ ;
STREUBEL, K ;
MIRIN, RP ;
HU, EL ;
BOWERS, JE .
ELECTRONICS LETTERS, 1994, 30 (09) :704-706
[7]   A WET ETCHING TECHNIQUE FOR ACCURATE ETCHING OF GAAS/ALAS DISTRIBUTED BRAGG REFLECTORS [J].
BACHER, K ;
HARRIS, JS .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (07) :2386-2388
[8]   Experimental investigation and analytical Modeling of excess intensity noise in semiconductor class-A lasers [J].
Baili, Ghaya ;
Bretenaker, Fabien ;
Morvan, Loic ;
Dolfi, Daniel ;
Sagnes, Isabelle .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2008, 26 (5-8) :952-961
[9]   Self-assembled monolayer assisted bonding of Si and InP [J].
Bakish, I. ;
Artel, V. ;
Ilovitsh, T. ;
Shubely, M. ;
Ben-Ezra, Y. ;
Zadok, A. ;
Sukenik, C. N. .
OPTICAL MATERIALS EXPRESS, 2012, 2 (08) :1141-1148
[10]   Semiconductor disk lasers for the generation of visible and ultraviolet radiation [J].
Calvez, Stephane ;
Hastie, Jennifer E. ;
Guina, Mircea ;
Okhotnikov, Oleg G. ;
Dawson, Martin D. .
LASER & PHOTONICS REVIEWS, 2009, 3 (05) :407-434