Identification of substitutional Li in n-type ZnO and its role as an acceptor

被引:53
作者
Johansen, K. M. [1 ]
Zubiaga, A. [2 ]
Makkonen, I. [3 ,4 ]
Tuomisto, F. [2 ]
Neuvonen, P. T. [1 ]
Knutsen, K. E. [1 ]
Monakhov, E. V. [1 ]
Kuznetsov, A. Yu. [1 ]
Svensson, B. G. [1 ]
机构
[1] Univ Oslo, Ctr Mat Sci & Nanotechnol, N-0318 Oslo, Norway
[2] Aalto Univ, Dept Appl Phys, Espoo 00076, Finland
[3] Aalto Univ, Helsinki Inst Phys, Espoo 00076, Finland
[4] Aalto Univ, Dept Appl Phys, Espoo 00076, Finland
来源
PHYSICAL REVIEW B | 2011年 / 83卷 / 24期
基金
芬兰科学院;
关键词
AUGMENTED-WAVE METHOD; POSITRON-ANNIHILATION; INFRARED-ABSORPTION; INDUCED DEFECTS; LITHIUM; HYDROGEN; DONOR; SPECTROSCOPY;
D O I
10.1103/PhysRevB.83.245208
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Monocrystalline n-type zinc oxide (ZnO) samples prepared by different techniques and containing various amounts of lithium (Li) have been studied by positron annihilation spectroscopy (PAS) and secondary ion mass spectrometry. A distinct PAS signature of negatively charged Li atoms occupying a Zn-site (Li-Zn(-)), so-called substitutional Li, is identified and thus enables a quantitative determination of the content of Li-Zn. In hydrothermally grown samples with a total Li concentration of similar to 2 x 10(17) cm(-3), LiZn is found to prevail strongly, with only minor influence, by other possible configurations of Li. Also in melt grown samples doped with Li to a total concentration as high as 1.5 x 10(19) cm(-3), a considerable fraction of the Li atoms (at least 20%) is shown to reside on the Zn-site, but despite the corresponding absolute acceptor concentration of >=(2-3) x 10(18) cm(-3), the samples did not exhibit any detectable p-type conductivity. The presence of LiZn is demonstrated to account for the systematic difference in positron lifetime of 10-15 ps between Li-rich and Li-lean ZnO materials as found in the literature, but further work is needed to fully elucidate the role of residual hydrogen impurities and intrinsic open volume defects.
引用
收藏
页数:7
相关论文
共 47 条
[1]   Theoretical and experimental study of positron annihilation with core electrons in solids [J].
Alatalo, M ;
Barbiellini, B ;
Hakala, M ;
Kauppinen, H ;
Korhonen, T ;
Puska, MJ ;
Saarinen, K ;
Hautojarvi, P ;
Nieminen, RM .
PHYSICAL REVIEW B, 1996, 54 (04) :2397-2409
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   ELECTRON-POSITRON DENSITY-FUNCTIONAL THEORY [J].
BORONSKI, E ;
NIEMINEN, RM .
PHYSICAL REVIEW B, 1986, 34 (06) :3820-3831
[4]   Deactivation of Li by vacancy clusters in ion-implanted and flash-annealed ZnO [J].
Borseth, T. Moe ;
Tuomisto, F. ;
Christensen, J. S. ;
Skorupa, W. ;
Monakhov, E. V. ;
Svensson, B. G. ;
Kuznetsov, A. Yu. .
PHYSICAL REVIEW B, 2006, 74 (16)
[5]   Vacancy clustering and acceptor activation in nitrogen-implanted ZnO [J].
Borseth, Thomas Moe ;
Tuomisto, Filip ;
Christensen, Jens S. ;
Monakhov, Edouard V. ;
Svensson, Bengt G. ;
Kuznetsov, Andrej Yu. .
PHYSICAL REVIEW B, 2008, 77 (04)
[6]   Identification of Zn-vacancy-hydrogen complexes in ZnO single crystals: A challenge to positron annihilation spectroscopy [J].
Brauer, G. ;
Anwand, W. ;
Grambole, D. ;
Grenzer, J. ;
Skorupa, W. ;
Cizek, J. ;
Kuriplach, J. ;
Prochazka, I. ;
Ling, C. C. ;
So, C. K. ;
Schulz, D. ;
Klimm, D. .
PHYSICAL REVIEW B, 2009, 79 (11)
[7]   Characterization of radiation-induced defects in ZnO probed by positron annihilation spectroscopy [J].
Brunner, S ;
Puff, W ;
Balogh, AG ;
Mascher, P .
POSITRON ANNIHILATION - ICPA-12, 2001, 363-3 :141-143
[8]   Li-related defects in ZnO: Hybrid functional calculations [J].
Carvalho, A. ;
Alkauskas, A. ;
Pasquarello, Alfredo ;
Tagantsev, A. K. ;
Setter, N. .
PHYSICA B-CONDENSED MATTER, 2009, 404 (23-24) :4797-4799
[9]   Vacancy defects in electron-irradiated ZnO studied by Doppler broadening of annihilation radiation [J].
Chen, Z. Q. ;
Betsuyaku, K. ;
Kawasuso, A. .
PHYSICAL REVIEW B, 2008, 77 (11)
[10]  
Chen ZQ, 2006, CHINESE PHYS LETT, V23, P675, DOI 10.1088/0256-307X/23/3/042