Global superconvergence estimates of finite element method for Schrodinger equation

被引:0
|
作者
Lin, Q
Liu, XQ
机构
[1] Acad Sinica, Inst Syst Sci, Beijing 100080, Peoples R China
[2] Xiangtan Teachers Coll, Dept Math, Hunan 411201, Peoples R China
关键词
finite element; superconvergence estimates; interpolation; Schrodinger equation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we shall study the initial boundary value problem of Schrodinger equation. The second order gradient superconvergence estimates for the problem are obtained solving by linear finite elements.
引用
收藏
页码:521 / 526
页数:6
相关论文
共 50 条
  • [21] Superconvergence estimates of finite element methods for American options
    Qun Lin
    Tang Liu
    Shuhua Zhang
    Applications of Mathematics, 2009, 54 : 181 - 202
  • [22] SUPERCONVERGENCE ESTIMATES OF FINITE ELEMENT METHODS FOR AMERICAN OPTIONS
    Lin, Qun
    Liu, Tang
    Zhang, Shuhua
    APPLICATIONS OF MATHEMATICS, 2009, 54 (03) : 181 - 202
  • [23] Superconvergence in the generalized finite element method
    Ivo Babuška
    Uday Banerjee
    John E. Osborn
    Numerische Mathematik, 2007, 107 : 353 - 395
  • [24] Superconvergence and a posteriori error estimates in finite element methods
    Chen, Chuanmiao
    Shi, Zhong-Ci
    Xie, Ziqing
    Zhang, Zhimin
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2006, 3 (03)
  • [25] Superconvergence in the generalized finite element method
    Babuska, Ivo
    Banerjee, Uday
    Osborn, John E.
    NUMERISCHE MATHEMATIK, 2007, 107 (03) : 353 - 395
  • [26] GLOBAL ESTIMATES FOR THE SCHRODINGER-EQUATION
    BENARTZI, M
    JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 107 (02) : 362 - 368
  • [27] Weak Galerkin finite element method for the linear Schrodinger equation
    Aziz, Dalal Ismael
    Hussein, Ahmed J.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2023, 26 (05) : 919 - 923
  • [28] Weak Galerkin finite element method for the nonlinear Schrodinger equation
    Aziz, Dalai Ismael
    Hussein, Ahmed J.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 2453 - 2468
  • [29] Galerkin finite element method for damped nonlinear Schrodinger equation
    Wang, Lingli
    Li, Meng
    APPLIED NUMERICAL MATHEMATICS, 2022, 178 : 216 - 247
  • [30] Nonconforming finite element method for a generalized nonlinear Schrodinger equation
    Zhang, Houchao
    Shi, Dongyang
    Li, Qingfu
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 377