The conformal vector fields on Kropina manifolds

被引:5
作者
Cheng, Xinyue [1 ,2 ]
Yin, Li [2 ]
Li, Tingting [2 ]
机构
[1] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
[2] Chongqing Univ Technol, Sch Sci, Chongqing 400054, Peoples R China
基金
中国国家自然科学基金;
关键词
Kropina metric; Conformal vector field; Flag curvature; Riemann metric; Sectional curvature; SCALAR FLAG CURVATURE; METRICS;
D O I
10.1016/j.difgeo.2017.10.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study and characterize the conformal vector fields on Kropina manifolds. Furthermore, we obtain the explicit expressions of conformal vector fields on a Kropina manifold (M, F) of weakly isotropic flag curvature with the conditions that b = parallel to beta parallel to alpha is a constant and the dimension of M is greater than two. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:344 / 354
页数:11
相关论文
共 16 条
[1]  
Antonelli P.L., 1993, THEORY SPRAYS FINSLE
[2]  
Bacso S., 2007, Adv. Stud. Pure Math., Math. Soc. Japan, V48, P73
[3]   RANDERS METRICS OF SCALAR FLAG CURVATURE [J].
Cheng, Xinyue ;
Shen, Zhongmin .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 87 (03) :359-370
[4]  
Chern S. S., 2005, Riemannian-Finsler Geometry
[5]  
Doebner H.D., 1987, 15 INT C DIFF GEOM M
[6]   ON CONFORMAL FIELDS OF A RANDERS METRIC WITH ISOTROPIC S-CURVATURE [J].
Huang, Libing ;
Mo, Xiaohuan .
ILLINOIS JOURNAL OF MATHEMATICS, 2013, 57 (03) :685-696
[7]  
Kropina V., 1961, Trudy Sem. Vektor. Tenzor. Anal, V11, P277
[8]  
Kropina V.K., 1959, NAUCHN DOKL VYSSH SH, V2, P38
[9]  
Matsumoto M., 1978, Tensor, V32, P225
[10]  
MATSUMOTO M, 1991, TENSOR NS, V50, P194