Predicted semiconducting beryllium sulfides in 3D and 2D configurations: Insights from first-principles calculations

被引:10
作者
Gong, Ning [1 ]
Deng, Chunxing [1 ]
Wu, Lailei [1 ,3 ]
Wan, Biao [1 ,2 ]
Wang, Zhibin [3 ]
Li, Zhiping [3 ]
Gou, Huiyang [2 ,3 ]
Gao, Faming [3 ]
机构
[1] Yanshan Univ, Coll Mat Sci & Engn, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
[2] Ctr High Pressure Sci & Technol Adv Res, Beijing 100094, Peoples R China
[3] Yanshan Univ, Coll Environm & Chem Engn, Key Lab Appl Chem, Qinhuangdao 066004, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
First-principles calculations; Beryllium sulfides; Structural stability; Electronic property; ELECTRONIC-STRUCTURE; CHALCOGENIDES BES; PHASE-TRANSFORMATION; OPTICAL-PROPERTIES; ELASTIC PROPERTIES; AB-INITIO; MONOLAYER; BATTERIES; CONSTANTS; BETE;
D O I
10.1016/j.jallcom.2018.11.374
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Light-metal sulfides have attracted great attention due to the technological application as energy storage devices. Combining first-principles calculations with structure searching, sulfur-rich compounds were explored theoretically in Be-S system. Interestingly, our results identify a hitherto unknown stoichiometry BeS2 in bulk and two-dimensional (2D) configuration. With the pressure increasing, BeS2 in bulk adopts P (1) over bar structure at ambient pressure, C2 phase over 1.6 GPa and then a cubic c-BeS2 with unique S-2(2-) dimmers up to 5.8 GPa. The monolayer penta-BeS2 with Be2S3 pentagons and bilayer BeS structure are presented. Predicted c-BeS2, 2D BeS2 and BeS phases show a semiconducting character, interestingly, cBeS(2) is found to have a direct band gap of 1.52eV. The discovery of unknown beryllium sulfides and the understanding of electronic and chemical bonding properties will provide prerequisite for the potential application in electrochemistry. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:371 / 377
页数:7
相关论文
共 63 条
[1]   The electronic transport properties of graphene-like beryllium sulfide nanoribbons [J].
An, Yipeng ;
Wang, Tianxing ;
Fu, Zhaoming ;
Chu, Xing Li ;
Xu, Guoliang .
PHYSICS LETTERS A, 2015, 379 (32-33) :1837-1841
[2]  
[Anonymous], 2015, Angew. Chem.
[3]  
Arrowsmith M, 2016, NAT CHEM, V8, P890, DOI [10.1038/nchem.2542, 10.1038/NCHEM.2542]
[4]   A SIMPLE MEASURE OF ELECTRON LOCALIZATION IN ATOMIC AND MOLECULAR-SYSTEMS [J].
BECKE, AD ;
EDGECOMBE, KE .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (09) :5397-5403
[5]  
Benosman N., 2004, J PHYS CHEM SOLIDS, V65, P1871
[6]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[7]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[8]   SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS [J].
CHADI, DJ .
PHYSICAL REVIEW B, 1977, 16 (04) :1746-1747
[9]   Bandgap Engineering of Strained Monolayer and Bilayer MoS2 [J].
Conley, Hiram J. ;
Wang, Bin ;
Ziegler, Jed I. ;
Haglund, Richard F., Jr. ;
Pantelides, Sokrates T. ;
Bolotin, Kirill I. .
NANO LETTERS, 2013, 13 (08) :3626-3630
[10]   Photoelectron Velocity Map Imaging Spectroscopy of the Beryllium Sulfide Anion, BeS- [J].
Dermer, Amanda R. ;
Green, Mallory L. ;
Mascaritolo, Kyle J. ;
Heaven, Michael C. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2017, 121 (30) :5645-5650