A multivariate Poisson-lognormal regression model for prediction of crash counts by severity, using Bayesian methods

被引:276
作者
Ma, Jianming [2 ]
Kockelman, Kara M. [1 ]
Damien, Paul [1 ]
机构
[1] Univ Texas Austin, Austin, TX 78712 USA
[2] Texas Dept Transportat, Austin, TX 78701 USA
关键词
Bayesian inference; Bayes' theorem; crash severity; Gibbs sampler; highway safety; Metropolis-Hastings algorithm; Markov chain Monte Carlo (MCMC) simulation; multivariate Poisson-lognormal regression;
D O I
10.1016/j.aap.2007.11.002
中图分类号
TB18 [人体工程学];
学科分类号
1201 ;
摘要
Numerous efforts have been devoted to investigating crash occurrence as related to roadway design features, environmental factors and traffic conditions. However, most of the research has relied on univariate count models; that is, traffic crash counts at different levels of severity are estimated separately, which may neglect shared information in unobserved error terms, reduce efficiency in parameter estimates, and lead to potential biases in sample databases. This paper offers a multivariate Poisson-lognormal (MVPLN) specification that simultaneously models crash counts by injury severity. The MVPLN specification allows for a more general correlation structure as well as overdispersion. This approach addresses several questions that are difficult to answer when estimating crash counts separately. Thanks to recent advances in crash modeling and Bayesian statistics, parameter estimation is done within the Bayesian paradigm, using a Gibbs Sampler and the Metropolis-Hastings (M-H) algorithms for crashes on Washington State rural two-lane highways. Estimation results from the MVPLN approach show statistically significant correlations between crash counts at different levels of injury severity. The non-zero diagonal elements suggest overdispersion in crash counts at all levels of severity. The results lend themselves to several recommendations for highway safety treatments and design policies. For example, wide lanes and shoulders are key for reducing crash frequencies, as are longer vertical curves. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:964 / 975
页数:12
相关论文
共 68 条
[1]   Modeling traffic accident occurrence and involvement [J].
Abdel-Aty, MA ;
Radwan, AE .
ACCIDENT ANALYSIS AND PREVENTION, 2000, 32 (05) :633-642
[2]  
Alfo M., 2004, EC J, V7, P1
[3]  
[Anonymous], 2021, Bayesian Data Analysis
[4]  
[Anonymous], 1997, OBSERVATIONAL BEFORE
[5]   ACCIDENT STATISTICS AND THE CONCEPT OF ACCIDENT-PRONENESS .1. A CRITICAL EVALUATION .2. THE MATHEMATICAL BACKGROUND [J].
ARBOUS, AG ;
KERRICH, JE .
BIOMETRICS, 1951, 7 (04) :340-432
[6]  
Balkin Sandy, 2001, J. Transp. Stat., V4, P1
[7]   The covariance between the number of accidents and the number of victims in multivariate analysis of accident related outcomes [J].
Bijleveld, FD .
ACCIDENT ANALYSIS AND PREVENTION, 2005, 37 (04) :591-600
[8]  
Blincoe LJ, 2002, The economic impact of motor vehicle crashes, 2000
[9]   Posterior simulation and Bayes factors in panel count data models [J].
Chib, S ;
Greenberg, E ;
Winkelmann, R .
JOURNAL OF ECONOMETRICS, 1998, 86 (01) :33-54
[10]   UNDERSTANDING THE METROPOLIS-HASTINGS ALGORITHM [J].
CHIB, S ;
GREENBERG, E .
AMERICAN STATISTICIAN, 1995, 49 (04) :327-335