An exact solution method for unconstrained quadratic 0-1 programming: a geometric approach

被引:15
作者
Li, D. [1 ]
Sun, X. L. [2 ]
Liu, C. L. [3 ]
机构
[1] Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China
[2] Fudan Univ, Sch Management, Dept Management Sci, Shanghai 200433, Peoples R China
[3] Shanghai Univ Finance & Econ, Dept Appl Math, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Quadratic; 0-1; programming; Nonlinear integer programming; Optimality condition; Lower bounds; Variable fixation; Branch-and-bound method; BOUND ALGORITHM; BOX CONSTRAINTS; MAXIMUM CUT; OPTIMIZATION; BRANCH; SEMIDEFINITE; FORMULATION; REDUCTION;
D O I
10.1007/s10898-011-9713-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We explore in this paper certain rich geometric properties hidden behind quadratic 0-1 programming. Especially, we derive new lower bounding methods and variable fixation techniques for quadratic 0-1 optimization problems by investigating geometric features of the ellipse contour of a (perturbed) convex quadratic function. These findings further lead to some new optimality conditions for quadratic 0-1 programming. Integrating these novel solution schemes into a proposed solution algorithm of a branch-and-bound type, we obtain promising preliminary computational results.
引用
收藏
页码:797 / 829
页数:33
相关论文
共 53 条
[1]   Finding independent sets in a graph using continuous multivariable polynomial formulations [J].
Abello, J ;
Butenko, S ;
Pardalos, PM ;
Resende, MGC .
JOURNAL OF GLOBAL OPTIMIZATION, 2001, 21 (02) :111-137
[2]   A TIGHT LINEARIZATION AND AN ALGORITHM FOR ZERO-ONE QUADRATIC-PROGRAMMING PROBLEMS [J].
ADAMS, WP ;
SHERALI, HD .
MANAGEMENT SCIENCE, 1986, 32 (10) :1274-1290
[3]   A branch and bound method via dc optimization algorithms and ellipsoidal technique for box constrained nonconvex quadratic problems [J].
An, LTH ;
Tao, PD .
JOURNAL OF GLOBAL OPTIMIZATION, 1998, 13 (02) :171-206
[4]   EXPERIMENTS IN QUADRATIC 0-1 PROGRAMMING [J].
BARAHONA, F ;
JUNGER, M ;
REINELT, G .
MATHEMATICAL PROGRAMMING, 1989, 44 (02) :127-137
[5]  
Beasley E., 1998, Heuristic algorithms for the unconstrained binary quadratic programming problem
[6]  
Beasley J.E., 1990, OR-Library
[7]   Global optimality conditions for quadratic optimization problems with binary constraints [J].
Beck, A ;
Teboulle, M .
SIAM JOURNAL ON OPTIMIZATION, 2000, 11 (01) :179-188
[8]   MINIMIZATION OF A QUADRATIC PSEUDO-BOOLEAN FUNCTION [J].
BILLIONNET, A ;
SUTTER, A .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1994, 78 (01) :106-115
[9]  
Billionnet A., 2005, 856 CEDRIC
[10]   Using a mixed integer quadratic programming solver for the unconstrained quadratic 0-1 problem [J].
Billionnet, Alain ;
Elloumi, Sourour .
MATHEMATICAL PROGRAMMING, 2007, 109 (01) :55-68