Compactness of Hankel Operators with Continuous Symbols

被引:6
作者
Clos, Timothy G. [1 ]
Aahutoglu, Sonmez [1 ]
机构
[1] Univ Toledo, Dept Math & Stat, Toledo, OH 43606 USA
关键词
Hankel operator; Reinhardt; Compact; Convex; BERGMAN SPACES;
D O I
10.1007/s11785-017-0659-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let be a bounded convex Reinhardt domain in and . We show that the Hankel operator is compact if and only if is holomorphic along every non-trivial analytic disc in the boundary of .
引用
收藏
页码:365 / 376
页数:12
相关论文
共 11 条
[1]  
[Anonymous], 2004, INTRO HARMONIC ANAL, DOI DOI 10.1017/CBO9781139165372
[2]  
[Anonymous], 2007, OPERATOR THEORY FUNC
[4]  
Cuckovic Z, 2014, NEW YORK J MATH, V20, P627
[5]   Compactness of Hankel operators and analytic discs in the boundary of pseudoconvex domains [J].
Cuckovic, Zeljko ;
Sahutoglu, Soenmez .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (11) :3730-3742
[6]   Compactness of the partial derivative-Neumann problem on convex domains [J].
Fu, SQ ;
Straube, EJ .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 159 (02) :629-641
[7]   Compact Hankel Operators on Generalized Bergman Spaces of the Polydisc [J].
Le, Trieu .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 67 (03) :425-438
[8]   HANKEL-OPERATORS ON THE BERGMAN SPACES OF STRONGLY PSEUDOCONVEX DOMAINS [J].
LI, HP .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1994, 19 (04) :458-476
[9]  
PELLER VV, 2003, SPRINGER MG MATH, P1, DOI 10.1007/978-0-387-21681-2
[10]   HANKEL-OPERATORS ON WEIGHTED BERGMAN SPACES ON STRONGLY PSEUDOCONVEX DOMAINS [J].
PELOSO, MM .
ILLINOIS JOURNAL OF MATHEMATICS, 1994, 38 (02) :223-249