New insights to build Na+/vacancy disordering for high-performance P2-type layered oxide cathodes

被引:66
作者
Yao, Hu-Rong [1 ,2 ,6 ]
Lv, Wei-Jun [1 ]
Yuan, Xin-Guang [1 ,2 ]
Guo, Yu-Jie [2 ,5 ]
Zheng, Lituo [1 ,4 ]
Yang, Xin-An [5 ]
Li, Jiaxin [1 ,4 ]
Huang, Yiyin [1 ,4 ]
Huang, Zhigao [1 ,4 ]
Wang, Peng-Fei [3 ]
Guo, Yu-Guo [2 ,5 ]
机构
[1] Fujian Normal Univ, Coll Phys & Energy, Fujian Prov Key Lab Quantum Manipulat & New Energ, Fuzhou 350117, Peoples R China
[2] Chinese Acad Sci, Inst Chem, CAS Key Lab Mol Nanostruct & Nanotechnol, Beijing 100190, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Elect Engn, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R China
[4] Fujian Prov Collaborat Innovat Ctr Adv High Field, Fuzhou 350117, Peoples R China
[5] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[6] Contemporary Amperex Technol Ltd CATL, 21C Innovat Lab, Ningde 352100, Peoples R China
基金
中国国家自然科学基金;
关键词
Na-ion batteries; P2-type layered oxides; Site energy difference; Na+/vacancy disordering; High-performance; SODIUM-ION BATTERIES; RICH;
D O I
10.1016/j.nanoen.2022.107207
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
P2-type Na-based layered oxides are potential cathode materials for high power Na-ion batteries (NIBs). However, complex Na+/vacancy ordering rearrangement evidenced by obvious voltage plateaus in the electrochemical profiles severely affects the Na storage capacities and cycling stability, hindering the commercialization of P2 materials. Herein, we show that the unfavorable rearrangement can be avoided by pre-forming lower Na content P2 materials with a delocalized electronic structure and modulated site energy difference between Na-f and Na-e, as demonstrated by DFT calculations. The disordered framework and enlarged interlayer spacing can be sustained throughout the whole electrochemical process, ensuring both a wider solid-solution region and smaller volume change during de-/sodiation. As a consequence, an excellent electrochemical performance, namely a high reversible capacity of 165.1 mAh g(-1), a superior rate performance of 76.7% of capacity retention at 1000 mA g(-1), and 91.7% capacity retention after 150 cycles, is harvested. Moreover, this strategy is universal and can be used to synthesize various disordering high-capacity P2 materials. This work provides a long-neglected and unexpected idea for improving the comprehensive performance of P2-type materials for facilitating their practical applications in NIBs.
引用
收藏
页数:9
相关论文
共 43 条
[1]   Electrochemical investigation of the P2-NaxCoO2 phase diagram [J].
Berthelot, R. ;
Carlier, D. ;
Delmas, C. .
NATURE MATERIALS, 2011, 10 (01) :74-U3
[2]   P2/O3 biphasic Fe/Mn-based layered oxide cathode with ultrahigh capacity and great cyclability for sodium ion batteries [J].
Chen, Cong ;
Huang, Weiyuan ;
Li, Yiwei ;
Zhang, Mingjian ;
Nie, Kaiqi ;
Wang, Jiaou ;
Zhao, Wenguang ;
Qi, Rui ;
Zuo, Changjian ;
Li, Zhibo ;
Yi, Haocong ;
Pan, Feng .
NANO ENERGY, 2021, 90
[3]   Na+-Conductive Na2Ti3O7-Modified P2-type Na2/3Ni1/3Mn2/3O2 via a Smart in Situ Coating Approach: Suppressing Na+/Vacancy Ordering and P2-O2 Phase Transition [J].
Dang, Rongbin ;
Chen, Minmin ;
Li, Qi ;
Wu, Kang ;
Lee, Yu Lin ;
Hu, Zhongbo ;
Xiao, Xiaoling .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (01) :856-864
[4]   STRUCTURAL CLASSIFICATION AND PROPERTIES OF THE LAYERED OXIDES [J].
DELMAS, C ;
FOUASSIER, C ;
HAGENMULLER, P .
PHYSICA B & C, 1980, 99 (1-4) :81-85
[5]   A Novel Ni-rich O3-Na[Ni0.60Fe0.25M 0.15]O2 Cathode for Na-ion Batteries [J].
Ding, Feixiang ;
Zhao, Chenglong ;
Zhou, Dong ;
Meng, Qingshi ;
Xiao, Dongdong ;
Zhang, Qiangqiang ;
Niu, Yaoshen ;
Li, Yuqi ;
Rong, Xiaohui ;
Lu, Yaxiang ;
Chen, Liquan ;
Hu, Yong-Sheng .
ENERGY STORAGE MATERIALS, 2020, 30 (30) :420-430
[6]  
Guignard M, 2013, NAT MATER, V12, P74, DOI [10.1038/NMAT3478, 10.1038/nmat3478]
[7]   Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes [J].
Guo, Yu-Jie ;
Wang, Peng-Fei ;
Niu, Yu-Bin ;
Zhang, Xu-Dong ;
Li, Qinghao ;
Yu, Xiqian ;
Fan, Min ;
Chen, Wan-Ping ;
Yu, Yang ;
Liu, Xiangfeng ;
Meng, Qinghai ;
Xin, Sen ;
Yin, Ya-Xia ;
Guo, Yu-Guo .
NATURE COMMUNICATIONS, 2021, 12 (01)
[8]   Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes [J].
House, Robert A. ;
Maitra, Urmimala ;
Perez-Osorio, Miguel A. ;
Lozano, Juan G. ;
Jin, Liyu ;
Somerville, James W. ;
Duda, Laurent C. ;
Nag, Abhishek ;
Walters, Andrew ;
Zhou, Ke-Jin ;
Roberts, Matthew R. ;
Bruce, Peter G. .
NATURE, 2020, 577 (7791) :502-+
[9]   NaV3(PO4)3/C nanocomposite as novel anode material for Na-ion batteries with high stability [J].
Hu, Pu ;
Wang, Xiaofang ;
Ma, Jun ;
Zhang, Zhonghua ;
He, Jianjiang ;
Wang, Xiaogang ;
Shi, Siqi ;
Cui, Guanglei ;
Chen, Liquan .
NANO ENERGY, 2016, 26 :382-391
[10]   Li-Rich Layered Oxides and Their Practical Challenges: Recent Progress and Perspectives [J].
Hu, Sijiang ;
Pillai, Anoop. S. ;
Liang, Gemeng ;
Pang, Wei Kong ;
Wang, Hongqiang ;
Li, Qingyu ;
Guo, Zaiping .
ELECTROCHEMICAL ENERGY REVIEWS, 2019, 2 (02) :277-311