Improved particle swarm optimization algorithm based novel encoding and decoding schemes for flexible job shop scheduling problem

被引:77
|
作者
Ding, Haojie [1 ]
Gu, Xingsheng [1 ]
机构
[1] East China Univ Sci & Technol, Key Lab Adv Control & Optimizat Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Flexible job shop scheduling problem; Particle swarm optimization algorithm; Encoding and decoding schemes; Local search; Operations research; SEQUENCE-DEPENDENT SETUP; GENETIC ALGORITHM; ANT COLONY; HYBRID; SEARCH;
D O I
10.1016/j.cor.2020.104951
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The flexible job shop scheduling problem (FJSP) is a typical scheduling problem in practical production and has been proven to be a NP-hard problem. The study of FJSP is important to remarkably direct actual manufacturing processes. The paper proposes an improved particle swarm optimization (PSO) algorithm for solving FJSP and obtains beneficial solutions by improvement on encoding/decoding scheme, communication mechanism between particles, and alternate rules of candidate machines of operations. The innovation of encoding/decoding scheme proposes a novel designed chain encoding scheme and a corresponding effective decoding scheme. The chain-based encoding scheme can reasonably convert FJSP to an appropriate operation linked list and the novel designed decoding scheme owns the capacity of further explorering the solution space. The improvement of traditional PSO focuses on the innovation of information communication between particles, besides the modification of algorithm architecture. The amelioration of rules on operated machine selection is carried out based on the critical path of operations research (OR). It promotes algorithm efficiency by only alternating the candidate machines of operations on the critical path. In addition, much parameters tuning work is involved in a series of experiments. The study proposes some tuning schemes of parameters with exact mathematical methods, and these schemes can effectively help find more appropriate parameters. The final experiment results prove that the improved PSO exhibits remarkable ability to solve FJSP. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Particle swarm optimization algorithm for flexible job shop scheduling problem
    Liu, Zhixiong
    Yang, Guangxiang
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2007, 14 : 327 - 333
  • [2] A Particle Swarm Optimization algorithm for Flexible Job shop scheduling problem
    Girish, B. S.
    Jawahar, N.
    2009 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING, 2009, : 298 - +
  • [3] Quantum particle swarm optimization with chaotic encoding schemes for flexible job-shop scheduling problem
    Xu, Yuanxing
    Wang, Deguang
    Zhang, Mengjian
    Yang, Ming
    Liang, Chengbin
    SWARM AND EVOLUTIONARY COMPUTATION, 2025, 93
  • [4] A Grouping Particle Swarm Optimization Algorithm for Flexible Job Shop Scheduling Problem
    Feng, Mingyue
    Yi, Xianqing
    Li, Guohui
    Tang, Shaoxun
    Jun, He
    PACIIA: 2008 PACIFIC-ASIA WORKSHOP ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION, VOLS 1-3, PROCEEDINGS, 2008, : 318 - 322
  • [5] A new algorithm for flexible job-shop scheduling problem based on particle swarm optimization
    Teekeng W.
    Thammano A.
    Unkaw P.
    Kiatwuthiamorn J.
    Artificial Life and Robotics, 2016, 21 (01) : 18 - 23
  • [6] An effective particle swarm optimization algorithm for flexible job-shop scheduling problem
    Nouiri, Maroua
    Jemai, Abderezak
    Ammari, Ahmed Chiheb
    Bekrar, Abdelghani
    Niar, Smail
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND SYSTEMS MANAGEMENT (IEEE-IESM 2013), 2013, : 29 - 34
  • [7] A novel particle swarm optimization approach for multiobjective flexible job shop scheduling problem
    Mekni, Souad
    Char, Besma Fayech
    Ksouri, Mekki
    ICINCO 2008: PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL ICSO: INTELLIGENT CONTROL SYSTEMS AND OPTIMIZATION, 2008, : 225 - 230
  • [8] Improved New Particle Swarm Algorithm Solving Job Shop Scheduling Optimization Problem
    Liu, Xiaobing
    Jiao, Xuan
    Li, Yanpeng
    Liang, Xu
    2013 3RD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), 2013, : 148 - 150
  • [9] The Application of Improved Hybrid Particle Swarm Optimization Algorithm in Job Shop Scheduling Problem
    Huang, Ming
    Liu, Qingsong
    Liang, Xu
    PROCEEDINGS OF 2019 IEEE 7TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2019), 2019, : 49 - 52
  • [10] Improved Particle Swarm Optimization Algorithm Combined with Reinforcement Learning for Solving Flexible Job Shop Scheduling Problem
    Gao, Yi-Jie
    Shang, Qing-Xia
    Yang, Yuan-Yuan
    Hu, Rong
    Qian, Bin
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 288 - 298