Varifold solutions of a sharp interface limit of a diffuse interface model for tumor growth

被引:14
作者
Melchionna, Stefano [1 ]
Rocca, Elisabetta [2 ,3 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Univ Pavia, Dipartimento Matemat, Via Ferrata 5, I-27100 Pavia, Italy
[3] CNR, IMATI, Via Ferrata 5, I-27100 Pavia, Italy
基金
奥地利科学基金会;
关键词
Free boundary problems; diffuse interface models; sharp interface limit; Cahn-Hilliard equation; Darcy law; tumor growth; CAHN-HILLIARD EQUATION; MIXTURE MODEL;
D O I
10.4171/IFB/393
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the sharp interface limit of a diffuse interface model for a coupled Cahn-Hilliard-Darcy system that models tumor growth when a certain parameter epsilon > 0, related to the interface thickness, tends to zero. In particular, we prove that weak solutions to the related initial boundary value problem tend to varifold solutions of a corresponding sharp interface model when epsilon goes to zero.
引用
收藏
页码:571 / 590
页数:20
相关论文
共 50 条
  • [31] Existence of weak solutions to a diffuse interface model involving magnetic fluids with unmatched densities
    Kalousek, Martin
    Mitra, Sourav
    Schloemerkemper, Anja
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 30 (04):
  • [32] STABILITY AND ERROR ANALYSIS OF STRUCTURE-PRESERVING SCHEMES FOR A DIFFUSE-INTERFACE TUMOR GROWTH MODEL
    Wang, Zhaoyang
    Lin, Ping
    Yang, Junxiang
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2025, 47 (01) : B59 - B86
  • [33] ANALYSIS OF A DIFFUSE INTERFACE MODEL FOR TWO-PHASE MAGNETOHYDRODYNAMIC FLOWS
    Di Primio, Andrea
    Grasselli, Maurizio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (12): : 3473 - 3534
  • [34] GENERAL DIFFUSE-INTERFACE THEORIES AND AN APPROACH TO PREDICTIVE TUMOR GROWTH MODELING
    Oden, J. Tinsley
    Hawkins, Andrea
    Prudhomme, Serge
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (03) : 477 - 517
  • [35] A DIFFUSE INTERFACE MODEL FOR ELECTROWETTING WITH MOVING CONTACT LINES
    Nochetto, Ricardo H.
    Salgado, Abner J.
    Walker, Shawn W.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (01) : 67 - 111
  • [37] Global solutions to a model with Dirichlet boundary conditions for interface motion by interface diffusion
    Bian, Xingzhi
    Luan, Liping
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (04)
  • [38] Sharp-interface limit of the Cahn-Hilliard-Biot equations
    Storvik, Erlend
    Bringedal, Carina
    APPLIED MATHEMATICS LETTERS, 2025, 166
  • [39] Interface dynamics in a two-phase tumor growth model
    Kim, Inwon
    Tong, Jiajun
    INTERFACES AND FREE BOUNDARIES, 2021, 23 (02) : 191 - 304
  • [40] Existence of Weak Solutions for a Diffuse Interface Model for Two-Phase Flows of Incompressible Fluids with Different Densities
    Abels, Helmut
    Depner, Daniel
    Garcke, Harald
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2013, 15 (03) : 453 - 480