The Schwarz-Christoffel mapping to bounded multiply connected polygonal domains

被引:72
作者
Crowdy, D [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2005年 / 461卷 / 2061期
关键词
conformal mapping; Schwarz-Christoffel; multiply connected;
D O I
10.1098/rspa.2005.1480
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A formula for the generalized Schwarz-Christoffel mapping from a bounded multiply connected circular domain to a bounded multiply connected polygonal domain is derived. The theory of classical Schottky groups is employed. The formula for the derivative of the mapping function contains a product of powers of Schottky-Klein prime functions associated with a Schottky group relevant to the circular pre-image domain. The formula generalizes, in a natural way, the known mapping formulae for simply and doubly connected polygonal domains.
引用
收藏
页码:2653 / 2678
页数:26
相关论文
共 22 条
[1]  
Ablowitz M.J., 1997, COMPLEX VARIABLES IN
[2]  
AKHIEZER NI, 1970, TRANSLATIONS MATH MO, V79
[3]  
AKHIEZER NI, 1928, UKR AK NAUK T FIZ MA, V7
[4]  
[Anonymous], JPN J MATH
[5]  
[Anonymous], INDRAS PEARLS
[6]  
Baker H. F., 1995, ABELS THEOREM ALLIED
[7]  
Beardon A. F., 1984, LONDON MATH SOC LECT, V78
[8]  
Courant Richard, 1950, Dirichlet's Principle, Conformal Mapping, and Minimal Surfaces
[9]   Analytical formulae for the Kirchhoff-Routh path function in multiply connected domains [J].
Crowdy, D ;
Marshall, J .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2060) :2477-2501
[10]  
CROWDY DG, UNPYB MATH P CAMB PH