Simple Multi-dataset Detection

被引:29
作者
Zhou, Xingyi [1 ]
Koltun, Vladlen [2 ]
Krahenbuhl, Philipp [1 ]
机构
[1] Univ Texas Austin, Austin, TX 78712 USA
[2] Apple, Cupertino, CA USA
来源
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2022年
基金
美国国家科学基金会;
关键词
D O I
10.1109/CVPR52688.2022.00742
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
How do we build a general and broad object detection system? We use all labels of all concepts ever annotated. These labels span diverse datasets with potentially inconsistent taxonomies. In this paper, we present a simple method for training a unified detector on multiple large-scale datasets. We use dataset-specific training protocols and losses, but share a common detection architecture with dataset-specific outputs. We show how to automatically integrate these dataset-specific outputs into a common semantic taxonomy. In contrast to prior work, our approach does not require manual taxonomy reconciliation. Experiments show our learned taxonomy outperforms a expert-designed taxonomy in all datasets. Our multi-dataset detector performs as well as dataset-specific models on each training domain, and can generalize to new unseen dataset without fine-tuning on them. Code is available at https://github.com/xingyizhou/UniDet.
引用
收藏
页码:7561 / 7570
页数:10
相关论文
共 50 条
[31]   Multi-Dataset Multi-Task Learning for COVID-19 Prognosis [J].
Ruffini, Filippo ;
Tronchin, Lorenzo ;
Wu, Zhuoru ;
Chen, Wenting ;
Soda, Paolo ;
Shen, Linlin ;
Guarrasil, Valerio .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT XII, 2024, 15012 :251-261
[32]   Uni3D: A Unified Baseline for Multi-dataset 3D Object Detection [J].
Zhang, Bo ;
Yuan, Jiakang ;
Shi, Botian ;
Chen, Tao ;
Li, Yikang ;
Qiao, Yu .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :9253-9262
[33]   Transmission Line Fault Classification of Multi-Dataset Using CatBoost Classifier [J].
Ogar, Vincent Nsed ;
Hussain, Sajjad ;
Gamage, Kelum A. A. .
SIGNALS, 2022, 3 (03) :468-482
[34]   Federated learning with LSTM for intrusion detection in IoT-based wireless sensor networks: a multi-dataset analysis [J].
Anwar, Raja Waseem ;
Abrar, Mohammad ;
Salam, Abdu ;
Ullah, Faizan .
PEERJ COMPUTER SCIENCE, 2025, 11 :1-30
[35]   Clustering Examples in Multi-Dataset NLP Benchmarks with Item Response Theory [J].
Rodriguez, Pedro ;
Htut, Phu Mon ;
Lalor, John P. ;
Sedoc, Joao .
PROCEEDINGS OF THE THIRD WORKSHOP ON INSIGHTS FROM NEGATIVE RESULTS IN NLP (INSIGHTS 2022), 2022, :100-112
[36]   Multi-Dataset Benchmarks for Masked Identification using Contrastive Representation Learning [J].
Seneviratne, Sachith ;
Kasthuriarachchi, Nuran ;
Rasnayaka, Sanka .
2021 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA 2021), 2021, :359-366
[37]   Multi-dataset identification of innovative feature genes and molecular mechanisms in keratoconus [J].
Lyu, Ning ;
Dai, Yiqin ;
Wu, Jiawen ;
Fan, Yidan ;
Lyu, Zhaoyuan ;
Gu, Jiayu ;
Cheng, Jingyi ;
Xu, Jianjiang .
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2024, 28 (18)
[38]   MDT3D: Multi-Dataset Training for LiDAR 3D Object Detection Generalization [J].
Soum-Fontez, Louis ;
Deschaud, Jean-Emmanuel ;
Goulette, Francois .
2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, :5765-5772
[39]   Multi-dataset comparison of gridded observed temperature and precipitation extremes over China [J].
Yin, Hong ;
Donat, Markus G. ;
Alexander, Lisa V. ;
Sun, Ying .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2015, 35 (10) :2809-2827
[40]   Multi-dataset OMA and Finite Element Model Updating of Steel Observation Tower [J].
Ratnika, Lasma ;
Gaile, Liga ;
Nicoletti, Vanni ;
Gara, Fabrizio .
XII INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, EURODYN 2023, 2024, 2647