Simple Multi-dataset Detection

被引:28
作者
Zhou, Xingyi [1 ]
Koltun, Vladlen [2 ]
Krahenbuhl, Philipp [1 ]
机构
[1] Univ Texas Austin, Austin, TX 78712 USA
[2] Apple, Cupertino, CA USA
来源
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2022年
基金
美国国家科学基金会;
关键词
D O I
10.1109/CVPR52688.2022.00742
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
How do we build a general and broad object detection system? We use all labels of all concepts ever annotated. These labels span diverse datasets with potentially inconsistent taxonomies. In this paper, we present a simple method for training a unified detector on multiple large-scale datasets. We use dataset-specific training protocols and losses, but share a common detection architecture with dataset-specific outputs. We show how to automatically integrate these dataset-specific outputs into a common semantic taxonomy. In contrast to prior work, our approach does not require manual taxonomy reconciliation. Experiments show our learned taxonomy outperforms a expert-designed taxonomy in all datasets. Our multi-dataset detector performs as well as dataset-specific models on each training domain, and can generalize to new unseen dataset without fine-tuning on them. Code is available at https://github.com/xingyizhou/UniDet.
引用
收藏
页码:7561 / 7570
页数:10
相关论文
共 50 条
[21]   Dual-Mode Learning for Multi-Dataset X-Ray Security Image Detection [J].
Yang, Fenghong ;
Jiang, Runqing ;
Yan, Yan ;
Xue, Jing-Hao ;
Wang, Biao ;
Wang, Hanzi .
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 :3510-3524
[22]   Victim or Attacker? A Multi-dataset Domain Classification of Phishing Attacks [J].
Le Page, Sophie ;
Jourdan, Guy-Vincent .
2019 17TH INTERNATIONAL CONFERENCE ON PRIVACY, SECURITY AND TRUST (PST), 2019, :96-105
[23]   Multi-dataset OMA of a Sightseeing Tower with the New SpCF Method [J].
Amador, Sandro Diord R. ;
Rogers, Timothy J. ;
Gaile, Liga .
PROCEEDINGS OF THE 10TH INTERNATIONAL OPERATIONAL MODAL ANALYSIS CONFERENCE, VOL 1, IOMAC 2024, 2024, 514 :652-662
[24]   Attention-Enhanced CNN for High-Performance Deepfake Detection: A Multi-Dataset Study [J].
Dasgupta, Subhram ;
Badal, Kushal ;
Chittam, Swetha ;
Alam, Md Tasnim ;
Roy, Kaushik .
IEEE ACCESS, 2025, 13 :101980-101993
[25]   Plain-Det: A Plain Multi-dataset Object Detector [J].
Shi, Cheng ;
Zhu, Yuchen ;
Yang, Sibei .
COMPUTER VISION - ECCV 2024, PT V, 2025, 15063 :210-226
[26]   Facial Expression Recognition Based on Multi-dataset Neural Network [J].
Yang, Bin ;
Li, Zhenyu ;
Cao, Enguo .
RADIOENGINEERING, 2020, 29 (01) :259-266
[27]   DaTaSeg: Taming a Universal Multi-Dataset Multi-Task Segmentation Model [J].
Gu, Xiuye ;
Cui, Yin ;
Huang, Jonathan ;
Rashwan, Abdullah ;
Yang, Xuan ;
Zhou, Xingyi ;
Ghiasi, Golnaz ;
Kuo, Weicheng ;
Chen, Huizhong ;
Chen, Liang-Chieh ;
Ross, David .
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
[28]   Data-driven multi-dataset refinement of macromolecular structures [J].
Lassinantti, Lena ;
Luo, Ying ;
Pearce, Nicholas M. .
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2023, 52 (SUPPL 1) :S90-S90
[29]   Visual Person Understanding Through Multi-task and Multi-dataset Learning [J].
Pfeiffer, Kilian ;
Hermans, Alexander ;
Sarandi, Istvan ;
Weber, Mark ;
Leibe, Bastian .
PATTERN RECOGNITION, DAGM GCPR 2019, 2019, 11824 :551-566
[30]   Multi-dataset fusion for multi-task learning on face attribute recognition [J].
Lu, Hengjie ;
Xu, Shugong ;
Wang, Jiahao .
PATTERN RECOGNITION LETTERS, 2023, 173 :72-78