A Reconstruction of Quantum Mechanics

被引:7
|
作者
Kochen, Simon [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
Reconstruction; Quantum paradoxes; Quantum mechanics; Classical mechanics; LOGIC;
D O I
10.1007/s10701-015-9886-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that exactly the same intuitively plausible definitions of state, observable, symmetry, dynamics, and compound systems of the classical Boolean structure of intrinsic properties of systems lead, when applied to the structure of extrinsic, relational quantum properties, to the standard quantum formalism, including the Schrodinger equation and the von Neumann-Luders Projection Rule. This approach is then applied to resolving the paradoxes and difficulties of the orthodox interpretation.
引用
收藏
页码:557 / 590
页数:34
相关论文
共 50 条
  • [21] Classical and Quantum Mechanics via Supermetrics in Time
    Gozzi, E.
    FOUNDATIONS OF PHYSICS, 2010, 40 (07) : 795 - 806
  • [22] Classical and Quantum Mechanics via Supermetrics in Time
    E. Gozzi
    Foundations of Physics, 2010, 40 : 795 - 806
  • [23] FROM QUANTUM MECHANICS TO QUANTUM REALITY
    Zizek, Slavoj
    FILOZOFIA, 2023, 78 (06): : 409 - 428
  • [24] Employing Quantum Mechanics for Quantum Cryptography
    Abhanu, Rasika
    Aruigu, Naveen
    Bale, Sowmya
    Beeram, Geethanjali
    Bhattu, Zurendra Sai Raj
    Mahmoud, Mohammed
    2023 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE, CSCI 2023, 2023, : 894 - 899
  • [25] Invariant Boltzmann Statistical Mechanics and the Physical Foundations of Quantum Mechanics, Quantum Gravity, and Quantum Cosmology
    Sohrab, Siavash H.
    16TH CHAOTIC MODELING AND SIMULATION INTERNATIONAL CONFERENCE, 2024, : 611 - 631
  • [26] Unified theory of classic mechanics and quantum mechanics
    Li, Hong-Xing
    MODERN PHYSICS LETTERS A, 2020, 35 (38)
  • [27] Geometrization of quantum mechanics
    Carinena, J. F.
    Clemente-Gallardo, J.
    Marmo, G.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 152 (01) : 894 - 903
  • [28] Geometrization of quantum mechanics
    J. F. Cariñena
    J. Clemente-Gallardo
    G. Marmo
    Theoretical and Mathematical Physics, 2007, 152 : 894 - 903
  • [29] On the categoricity of quantum mechanics
    Iulian D. Toader
    European Journal for Philosophy of Science, 2021, 11
  • [30] QUANTUM MECHANICS EXPLAINED
    Mohrhoff, Ulrich
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 (01) : 435 - 458