Challenges of Artificial Intelligence in Space Medicine

被引:34
作者
Waisberg, Ethan [1 ]
Ong, Joshua [2 ]
Paladugu, Phani [3 ]
Kamran, Sharif Amit [4 ]
Zaman, Nasif [4 ]
Lee, Andrew G. [5 ,6 ]
Tavakkoli, Alireza [4 ]
机构
[1] Univ Coll Dublin, Sch Med, Dublin, Ireland
[2] Univ Michigan, Michigan Med, Ann Arbor, MI 48109 USA
[3] Harvard Med Sch, Brigham & Womens Hosp, Boston, MA 02115 USA
[4] Univ Nevada, Dept Comp Sci & Engn, Human Machine Percept Lab, Reno, NV 89557 USA
[5] Baylor Coll Med, Ctr Space Med, Houston, TX 77030 USA
[6] Houston Methodist Hosp, Blanton Eye Inst, Dept Ophthalmol, Houston, TX 77030 USA
来源
SPACE-SCIENCE & TECHNOLOGY | 2022年 / 2022卷
关键词
VISUAL ASSESSMENT TECHNOLOGY;
D O I
10.34133/2022/9852872
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The human body undergoes many changes during long-duration spaceflight including musculoskeletal, visual, and behavioral changes. Several of these microgravity-induced effects serve as potential barriers to future exploration missions. The advent of artificial intelligence (AI) in medicine has progressed rapidly and has many promising applications for maintaining and monitoring astronaut health during spaceflight. However, the austere environment and unique nature of spaceflight present with challenges in successfully training and deploying successful systems for upholding astronaut health and mission performance. In this article, the dynamic barriers facing AI development in space medicine are explored. These diverse challenges range from limited astronaut data for algorithm training to ethical/legal considerations in deploying automated diagnostic systems in the setting of the medically limited space environment. How to address these challenges is then discussed and future directions for this emerging field of research.
引用
收藏
页数:7
相关论文
共 29 条
[1]  
Bajwa Junaid, 2021, Future Healthc J, V8, pe188, DOI 10.7861/fhj.2021-0095
[2]  
Bizzego A, 2021, BIOENGINEERING-BASEL, V8, DOI [10.3390/bioengineering8030035, 10.3390/bioengineering8030000]
[3]  
Cao H., 2021, arXiv
[4]   S3D-UNet: Separable 3D U-Net for Brain Tumor Segmentation [J].
Chen, Wei ;
Liu, Boqiang ;
Peng, Suting ;
Sun, Jiawei ;
Qiao, Xu .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 :358-368
[5]   Transfer Learning with Convolutional Neural Networks for Classification of Abdominal Ultrasound Images [J].
Cheng, Phillip M. ;
Malhi, Harshawn S. .
JOURNAL OF DIGITAL IMAGING, 2017, 30 (02) :234-243
[6]   Human Pathophysiological Adaptations to the Space Environment [J].
Demontis, Gian C. ;
Germani, Marco M. ;
Caiani, Enrico G. ;
Barravecchia, Ivana ;
Passino, Claudio ;
Angeloni, Debora .
FRONTIERS IN PHYSIOLOGY, 2017, 8
[7]   GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification [J].
Frid-Adar, Maayan ;
Diamant, Idit ;
Klang, Eyal ;
Amitai, Michal ;
Goldberger, Jacob ;
Greenspan, Hayit .
NEUROCOMPUTING, 2018, 321 :321-331
[8]   A Transfer Learning-Based Active Learning Framework for Brain Tumor Classification [J].
Hao, Ruqian ;
Namdar, Khashayar ;
Liu, Lin ;
Khalvati, Farzad .
FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2021, 4
[9]   An overview of space medicine [J].
Hodkinson, P. D. ;
Anderton, R. A. ;
Posselt, B. N. ;
Fong, K. J. .
BRITISH JOURNAL OF ANAESTHESIA, 2017, 119 :I143-I153
[10]   Development and Validation of a Deep Learning-Based Automated Detection Algorithm for Major Thoracic Diseases on Chest Radiographs [J].
Hwang, Eui Jin ;
Park, Sunggyun ;
Jin, Kwang-Nam ;
Kim, Jung Im ;
Choi, So Young ;
Lee, Jong Hyuk ;
Goo, Jin Mo ;
Aum, Jaehong ;
Yim, Jae-Joon ;
Cohen, Julien G. ;
Ferretti, Gilbert R. ;
Park, Chang Min ;
Kim, Dong Hyeon ;
Woo, Sungmin ;
Choi, Wonseok ;
Hwang, In Pyung ;
Song, Yong Sub ;
Lim, Jiyeon ;
Kim, Hyungjin ;
Wi, Jae Yeon ;
Oh, Su Suk ;
Kang, Mi-Jin ;
Lee, Nyoung Keun ;
Yoo, Jin Young ;
Suh, Young Joo .
JAMA NETWORK OPEN, 2019, 2 (03) :e191095