Asymptotic behaviour of principal eigenvalues for a class of cooperative systems

被引:29
作者
Caudevilla, Pablo Alvarez [1 ]
Lopez-Gomez, Julian [2 ]
机构
[1] Univ Catolica Avila, Dept Matemat, Avila, Spain
[2] Univ Complutense Madrid, Dept Matemat Aplicada, E-28040 Madrid, Spain
关键词
cooperative systems; principal eigenvalues; degenerate problem; asymptotic behaviour; lower estimates through the lebesgue measure;
D O I
10.1016/j.jde.2007.10.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper analyzes the asymptotic behaviour as lambda up arrow infinity of the principal eigenvalue of the cooperative operator [GRAPHICS] in a bounded smooth domain 2 of R N, AT > 1, under homogeneous Dirichlet boundary conditions on a Q, where a >= 0, d >= 0, and b(x) > 0, c(x) > 0, for all x is an element of Omega. Precisely, our main result establishes that if Int(a + d)(-1) (0) consists of two components, Q(0,1) and Omega(0,2), then [GRAPHICS] where, for any D subset of Omega and lambda is an element of R, sigma(1)[(lambda); D] stands for the principal eigenvalue of 2 (.) in D. Moreover, if we denote by (phi(lambda),psi(lambda)) the principal eigenfunction associated to sigma [(lambda); Omega], normalized so that = 1, and, for instance, [GRAPHICS] then the limit [GRAPHICS] is well defined in Ho-0(1)(Omega) x H-0(1) (Omega), (phi= Psi = 0 in Omega \ Omega(0,1) and (phi,Psi)|Omega(0,1) provides us with the principal eigenfunction of . This is a rather striking result, for as, according to it, the principal ei-enfunction must approximate zero as oo if a + d > 0, in spite of the cooperative structure of the operator. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1093 / 1113
页数:21
相关论文
共 15 条
[1]  
ALVAREZCAUDEVIL.P, IN PRESS P AM MATH S
[2]  
ALVAREZCAUDEVIL.P, 2007, NONLINEAR REAL WORLD, DOI DOI 10.1016/J.N0NRWA.2007.02.010
[3]  
Amann H, 2005, TEN MATHEMATICAL ESSAYS ON APPROXIMATION IN ANALYSIS AND TOPOLOGY, P1, DOI 10.1016/B978-044451861-3/50001-X
[4]  
[Anonymous], DIFF INT EQNS
[5]  
Babuska I., 1965, CZECH MATH J, V15, P169
[6]   Semiclassical analysis of general second order elliptic operators on bounded domains [J].
Dancer, EN ;
López-Gómez, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (08) :3723-3742
[7]  
de Figueiredo D.G., 1992, REND ISTIT MAT U T B, Vb2, P36
[8]  
FABER C, 1923, AKAD WISS MATH PHYS, P169
[9]  
Kato T., 1984, PERTURBATION THEORY
[10]   A Rayleigh formulated minimal characteristic of the circle [J].
Krahn, E .
MATHEMATISCHE ANNALEN, 1925, 94 :97-100