Breaking the limits: The Taylor series method

被引:53
作者
Barrio, R. [1 ,2 ]
Rodriguez, M. [1 ,2 ]
Abad, A. [2 ,3 ]
Blesa, F. [4 ]
机构
[1] Univ Zaragoza, Dept Matemat Aplicada, GME, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, IUMA, E-50009 Zaragoza, Spain
[3] Univ Zaragoza, Dept Fis Teor, GME, E-50009 Zaragoza, Spain
[4] Univ Zaragoza, Dept Fis Aplicada, GME, E-50009 Zaragoza, Spain
关键词
Taylor series method; Automatic differentiation; High-precision integration of ODEs; Variational equations; Box propagation; Freeware software; DIFFERENTIAL-ALGEBRAIC EQUATIONS; NUMERICAL-INTEGRATION; PERFORMANCE; ODES; DAES;
D O I
10.1016/j.amc.2011.02.080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses several examples of ordinary differential equation (ODE) applications that are difficult to solve numerically using conventional techniques, but which can be solved successfully using the Taylor series method. These results are hard to obtain using other methods such as Runge-Kutta or similar schemes; indeed, in some cases these other schemes are not able to solve such systems at all. In particular, we explore the use of the high-precision arithmetic in the Taylor series method for numerically integrating ODEs. We show how to compute the partial derivatives, how to propagate sets of initial conditions, and, finally, how to achieve the Brouwer's Law limit in the propagation of errors in longtime simulations. The TIDES software that we use for this work is freely available from a website. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:7940 / 7954
页数:15
相关论文
共 44 条
[1]  
ABAD A, TIDES TAYLOR SERIES
[2]  
Abramowitz M., 1972, Handbook on Mathematical Functions with Formulas, Graphs, and Mathematical Tables
[3]  
[Anonymous], 2000, FRONTIERS APPL MATH
[4]  
BAILEY D, 2010, HIGH PRECISION COMPU
[5]   A three-parametric study of the Lorenz model [J].
Barrio, R. ;
Serrano, S. .
PHYSICA D-NONLINEAR PHENOMENA, 2007, 229 (01) :43-51
[6]   Sensitivity analysis of ODEs/DAEs using the Taylor series method [J].
Barrio, R .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 27 (06) :1929-1947
[7]   Performance of the Taylor series method for ODEs/DAEs [J].
Barrio, R .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 163 (02) :525-545
[8]   Bifurcations and safe regions in open Hamiltonians [J].
Barrio, R. ;
Blesa, F. ;
Serrano, S. .
NEW JOURNAL OF PHYSICS, 2009, 11
[9]   Painting chaos: A gallery of sensitivity plots of classical problems [J].
Barrio, Roberto .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (10) :2777-2798
[10]   Systematic search of symmetric periodic orbits in 2DOF Hamiltonian systems [J].
Barrio, Roberto ;
Blesa, Fernando .
CHAOS SOLITONS & FRACTALS, 2009, 41 (02) :560-582