Multifractal spectra of fragmentation processes

被引:15
作者
Berestycki, J [1 ]
机构
[1] Univ Paris 06, CNRS, UMR 7599, Lab Probabil & Modeles Aleatoires, Paris, France
关键词
fragmentation; Galton-Watson trees; multifractal spectra;
D O I
10.1023/A:1026060516513
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let (S(t), t greater than or equal to 0) be a homogeneous fragmentation of] 0, 1[ with no loss of mass. For x is an element of] 0, 1[, we say that the fragmentation speed of x is v if and only if, as time passes, the size of the fragment that contains x decays exponentially with rate v. We show that there is v(typ) > 0 such that almost every point x is an element of] 0, 1[has speed v(typ). Nonetheless, for v in a certain range, the random set G(v) of points of speed v, is dense in] 0, 1[, and we compute explicitly the spectrum v --> Dim(G(v)) where Dim is the Hausdorff dimension.
引用
收藏
页码:411 / 430
页数:20
相关论文
共 32 条
[1]  
BASEDOW AM, 1978, MACROMOLECULES, V11, P744
[2]  
BERESTYCKI J, 2002, ESAIM-PROBAB STAT, V6, P15
[3]   Self-similar fragmentations [J].
Bertoin, J .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2002, 38 (03) :319-340
[4]   Homogeneous fragmentation processes [J].
Bertoin, J .
PROBABILITY THEORY AND RELATED FIELDS, 2001, 121 (03) :301-318
[5]  
BERTOIN J, 2001, LAB PROBABILITES MOD
[6]  
BEYSENS D, 1995, HOUCHES SERIES
[7]   LARGE DEVIATIONS IN THE SUPERCRITICAL BRANCHING-PROCESS [J].
BIGGINS, JD ;
BINGHAM, NH .
ADVANCES IN APPLIED PROBABILITY, 1993, 25 (04) :757-772
[8]   SPLITTING INTERVALS-II - LIMIT LAWS FOR LENGTHS [J].
BRENNAN, MD ;
DURRETT, R .
PROBABILITY THEORY AND RELATED FIELDS, 1987, 75 (01) :109-127
[9]   MULTIFRAGMENTATION - NUCLEI BREAK UP LIKE PERCOLATION CLUSTERS [J].
CAMPI, X .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (15) :L917-L921
[10]  
DAVIS B, 1983, Z WAHRSCHEINLICHKEIT, V64, P359, DOI 10.1007/BF00532967