Electron-hole correlations in semiconductor quantum dots with tight-binding wave functions -: art. no. 195318

被引:119
作者
Lee, S
Jönsson, L
Wilkins, JW
Bryant, GW
Klimeck, G
机构
[1] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
[2] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA
[3] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
关键词
D O I
10.1103/PhysRevB.63.195318
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The electron-hole states of semiconductor quantum dots are investigated within the framework of empirical tight-binding descriptions for Si, as an example of an indirect-gap material, and InAs and CdSe as examples of typical III-V and II-VI direct-gap materials. We significantly improve the energies of the single-particle states by optimizing tight-binding parameters to give the best effective masses. As a result, the calculated excitonic gaps agree within 5% error with recent photoluminescence data for Si and CdSe but they agree less well for InAs. The electron-hole Coulomb interaction is insensitive to different ways of optimizing the tight-binding parameters. However, it is sensitive to the choice of atomic orbitals; this sensitivity decreases with increasing dot size. Quantitatively, tight-binding treatments of Coulomb interactions are reliable for dots with radii larger than 15-20 Angstrom. Further, the effective range of the electron-hole exchange interaction is investigated in detail. In quantum dots of the direct-gap materials InAs and CdSe, the exchange interaction can be long ranged, extending over the whole dot when there is no local (onsite) orthogonality between the electron and hole wave functions. By contrast, for Si quantum dots the extra phase factor due to the indirect gap effectively limits the range to about 15 Angstrom, independent of the dot size.
引用
收藏
页数:13
相关论文
共 44 条
[1]   Quantum confinement energies in zinc-blende III-V and group IV semiconductors [J].
Allan, G ;
Niquet, YM ;
Delerue, C .
APPLIED PHYSICS LETTERS, 2000, 77 (05) :639-641
[2]   Energy level tunneling spectroscopy and single electron charging in individual CdSe quantum dots [J].
Alperson, B ;
Rubinstein, I ;
Hodes, G ;
Porath, D ;
Millo, O .
APPLIED PHYSICS LETTERS, 1999, 75 (12) :1751-1753
[3]   Size-dependent electronic level structure of InAs nanocrystal quantum dots: Test of multiband effective mass theory [J].
Banin, U ;
Lee, CJ ;
Guzelian, AA ;
Kadavanich, AV ;
Alivisatos, AP ;
Jaskolski, W ;
Bryant, GW ;
Efros, AL ;
Rosen, M .
JOURNAL OF CHEMICAL PHYSICS, 1998, 109 (06) :2306-2309
[4]   Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots [J].
Banin, U ;
Cao, YW ;
Katz, D ;
Millo, O .
NATURE, 1999, 400 (6744) :542-544
[5]  
BINDER K, 1997, MONTE CARLO SIMULATI
[6]   Coherent optical control of the quantum state of a single quantum dot [J].
Bonadeo, NH ;
Erland, J ;
Gammon, D ;
Park, D ;
Katzer, DS ;
Steel, DG .
SCIENCE, 1998, 282 (5393) :1473-1476
[7]   IDENTIFICATION OF RADIATIVE TRANSITIONS IN HIGHLY POROUS SILICON [J].
CALCOTT, PDJ ;
NASH, KJ ;
CANHAM, LT ;
KANE, MJ ;
BRUMHEAD, D .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1993, 5 (07) :L91-L98
[8]   Enhancement of electron-hole exchange interaction in CdSe nanocrystals: A quantum confinement effect [J].
Chamarro, M ;
Gourdon, C ;
Lavallard, P ;
Lublinskaya, O ;
Ekimov, AI .
PHYSICAL REVIEW B, 1996, 53 (03) :1336-1342
[9]   Multiexciton spectroscopy of a single self-assembled quantum dot [J].
Dekel, E ;
Gershoni, D ;
Ehrenfreund, E ;
Spektor, D ;
Garcia, JM ;
Petroff, PM .
PHYSICAL REVIEW LETTERS, 1998, 80 (22) :4991-4994
[10]   Excitonic and quasiparticle gaps in Si nanocrystals [J].
Delerue, C ;
Lannoo, M ;
Allan, G .
PHYSICAL REVIEW LETTERS, 2000, 84 (11) :2457-2460