Maximizing Stochastic Monotone Submodular Functions

被引:32
作者
Asadpour, Arash [1 ]
Nazerzadeh, Hamid [2 ]
机构
[1] NYU, Stern Sch Business, 550 1St Ave, New York, NY 10012 USA
[2] Univ Southern Calif, Marshall Sch Business, Los Angeles, CA 90089 USA
关键词
submodular maximization; stochastic optimization; adaptivity gap; influence spread in social networks; APPROXIMATIONS; WELFARE;
D O I
10.1287/mnsc.2015.2254
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We study the problem of maximizing a stochastic monotone submodular function with respect to a matroid constraint. Because of the presence of diminishing marginal values in real-world problems, our model can capture the effect of stochasticity in a wide range of applications. We show that the adaptivity gap-the ratio between the values of optimal adaptive and optimal nonadaptive policies-is bounded and is equal to e/(e - 1). We propose a polynomial- time nonadaptive policy that achieves this bound. We also present an adaptive myopic policy that obtains at least half of the optimal value. Furthermore, when the matroid is uniform, the myopic policy achieves the optimal approximation ratio of 1 - 1/e.
引用
收藏
页码:2374 / 2391
页数:18
相关论文
共 37 条
[1]   Submodular Stochastic Probing on Matroids [J].
Adamczyk, Marek ;
Sviridenko, Maxim ;
Ward, Justin .
31ST INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2014), 2014, 25 :29-40
[2]   Price of Correlations in Stochastic Optimization [J].
Agrawal, Shipra ;
Ding, Yichuan ;
Saberi, Amin ;
Ye, Yinyu .
OPERATIONS RESEARCH, 2012, 60 (01) :150-162
[3]   Maximizing a class of submodular utility functions [J].
Ahmed, Shabbir ;
Atamtuerk, Alper .
MATHEMATICAL PROGRAMMING, 2011, 128 (1-2) :149-169
[4]  
[Anonymous], 2003, PROC ACM SIGKDD INT
[5]  
Asadpour A, 2008, LECT NOTES COMPUT SC, V5385, P477, DOI 10.1007/978-3-540-92185-1_53
[6]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[7]  
Buchbinder M., 2014, P 25 ANN ACM SIAM S, P1433, DOI [10.1137/1.9781611973402.106, DOI 10.1137/1.9781611973402.106]
[8]   A Tight Linear Time (1/2)-Approximation for Unconstrained Submodular Maximization [J].
Buchbinder, Niv ;
Feldman, Moran ;
Naor, Joseph ;
Schwartz, Roy .
2012 IEEE 53RD ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2012, :649-658
[9]   MAXIMIZING A MONOTONE SUBMODULAR FUNCTION SUBJECT TO A MATROID CONSTRAINT [J].
Calinescu, Gruia ;
Chekuri, Chandra ;
Pal, Martin ;
Vondrak, Jan .
SIAM JOURNAL ON COMPUTING, 2011, 40 (06) :1740-1766
[10]   Stochastic Depletion Problems: Effective Myopic Policies for a Class of Dynamic Optimization Problems [J].
Chan, Carri W. ;
Farias, Vivek F. .
MATHEMATICS OF OPERATIONS RESEARCH, 2009, 34 (02) :333-350