Layer-selective synthesis of bilayer graphene via chemical vapor deposition

被引:10
作者
Yang, Ning [1 ]
Choi, Kyoungjun [1 ]
Robertson, John [2 ]
Park, Hyung Gyu [2 ]
机构
[1] Eidgenoss Tech Hsch ETH Zurich, Dept Mech & Proc Engn, Nanosci Energy Technol & Sustainabil, CH-8092 Zurich, Switzerland
[2] Univ Cambridge, Dept Engn, Elect Engn Div, Cambridge CB3 0FA, England
基金
瑞士国家科学基金会;
关键词
LARGE-AREA; GROWTH-MECHANISM; COPPER FOILS; HIGH-QUALITY; HYDROGEN; UNIFORM; FILMS; GRAPHITE; BANDGAP; OXYGEN;
D O I
10.1088/2053-1583/aa805d
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A controlled synthesis of high-quality AB-stacked bilayer graphene by chemical vapor deposition demands a detailed understanding of the mechanism and kinetics. By decoupling the growth of the two layers via a growth-and-regrowth scheme, we report the kinetics and termination mechanisms of the bilayer graphene growth on copper. We observe, for the first time, that the secondary layer growth follows Gompertzian kinetics. Our observations affirm the postulate of a time-variant transition from a mass-transport-limited to a reaction-limited regimes and identify the mechanistic disparity between the monolayer growth and the secondary-layer expansion underneath the monolayer cover. It is the continuous carbon supply that drives the expansion of the graphene secondary layer, rather than the initially captured carbon amount, suggesting an essential role of the surface diffusion of reactant adsorbates in the interspace between the top graphene layer and the underneath copper surface. We anticipate that the layer selectivity of the growth relies on the entrance energetics of the adsorbed reactants to the graphene-copper interspace across the primary-layer edge, which could be engineered by tailoring the edge termination state. The temperature-reliant saturation area of the secondary-layer expansion is understood as a result of competitive attachment of carbon and hydrogen adatoms to the secondary-layer graphene edge.
引用
收藏
页数:10
相关论文
共 37 条
[1]  
Aoki H., 2013, Physics of graphene
[2]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
[3]   Precision cutting and patterning of graphene with helium ions [J].
Bell, D. C. ;
Lemme, M. C. ;
Stern, L. A. ;
RWilliams, J. ;
Marcus, C. M. .
NANOTECHNOLOGY, 2009, 20 (45)
[4]   Strong mobility degradation in ideal graphene nanoribbons due to phonon scattering [J].
Betti, A. ;
Fiori, G. ;
Iannaccone, G. .
APPLIED PHYSICS LETTERS, 2011, 98 (21)
[5]   Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst [J].
Bhaviripudi, Sreekar ;
Jia, Xiaoting ;
Dresselhaus, Mildred S. ;
Kong, Jing .
NANO LETTERS, 2010, 10 (10) :4128-4133
[6]   Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures [J].
Britnell, L. ;
Gorbachev, R. V. ;
Jalil, R. ;
Belle, B. D. ;
Schedin, F. ;
Mishchenko, A. ;
Georgiou, T. ;
Katsnelson, M. I. ;
Eaves, L. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Leist, J. ;
Geim, A. K. ;
Novoselov, K. S. ;
Ponomarenko, L. A. .
SCIENCE, 2012, 335 (6071) :947-950
[7]   Evolutionary Kinetics of Graphene Formation on Copper [J].
Celebi, Kemal ;
Cole, Matthew T. ;
Choi, Jong Won ;
Wyczisk, Frederic ;
Legagneux, Pierre ;
Rupesinghe, Nalin ;
Robertson, John ;
Teo, Kenneth B. K. ;
Park, Hyung Gyu .
NANO LETTERS, 2013, 13 (03) :967-974
[8]   Contrasting Behavior of Carbon Nucleation in the Initial Stages of Graphene Epitaxial Growth on Stepped Metal Surfaces [J].
Chen, Hua ;
Zhu, Wenguang ;
Zhang, Zhenyu .
PHYSICAL REVIEW LETTERS, 2010, 104 (18)
[9]   Asymmetric Growth of Bilayer Graphene on Copper Enclosures Using Low-Pressure Chemical Vapor Deposition [J].
Fang, Wenjing ;
Hsu, Allen L. ;
Song, Yi ;
Birdwell, Anthony G. ;
Amani, Matin ;
Dubey, Madan ;
Dresselhaus, Mildred S. ;
Palacios, Tomas ;
Kong, Jing .
ACS NANO, 2014, 8 (06) :6491-6499
[10]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57