COHOMOLOGY JUMP LOCI OF QUASI-PROJECTIVE VARIETIES

被引:0
作者
Budur, Nero [1 ,2 ]
Wang, Botong [2 ]
机构
[1] Katholieke Univ Leuven, Dept Math, B-3001 Louvain, Belgium
[2] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2015年 / 48卷 / 01期
关键词
BEAUVILLE; CATANESE; SYSTEMS; BUNDLES; MODULI;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the cohomology jump loci in the space of rank one local systems over a smooth quasi-projective variety are finite unions of torsion translates of subtori. The main ingredients are a recent result of Dimca-Papadima, some techniques introduced by Simpson, together with properties of the moduli space of logarithmic connections constructed by Nitsure and Simpson.
引用
收藏
页码:227 / 236
页数:10
相关论文
共 17 条
[1]  
[Anonymous], 1994, Publications Mathematiques
[2]  
[Anonymous], 1992, SINGULARITIES TOPOLO
[3]  
Arapura D, 1997, J ALGEBRAIC GEOM, V6, P563
[5]   Unitary local systems, multiplier ideals, and polynomial periodicity of Hodge numbers [J].
Budur, Nero .
ADVANCES IN MATHEMATICS, 2009, 221 (01) :217-250
[6]  
Deligne P., 1970, Lecture Notes in Mathematics, V163
[7]   Non-abelian cohomology jump loci from an analytic viewpoint [J].
Dimca, Alexandru ;
Papadima, Stefan .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (04)
[8]   DEFORMATION-THEORY, GENERIC VANISHING THEOREMS, AND SOME CONJECTURES OF ENRIQUES, CATANESE AND BEAUVILLE [J].
GREEN, M ;
LAZARSFELD, R .
INVENTIONES MATHEMATICAE, 1987, 90 (02) :389-407
[9]  
Green M., 1991, J. Amer. Math. Soc., V4, P87
[10]   Kobayashi-Hitchin correspondence for tame harmonic bundles II [J].
Mochizuki, Takuro .
GEOMETRY & TOPOLOGY, 2009, 13 :359-455