Demonstrating a target supply for inertial fusion energy

被引:6
作者
Goodin, DT
Alexander, NB
Brown, LC
Callahan, DA
Ebey, PS
Frey, DT
Gallix, R
Geller, DA
Gibson, CR
Hoffer, JK
Maxwell, JL
McQuillan, BW
Nikroo, A
Nobile, A
Olson, C
Petzoldt, RW
Raffray, R
Rickman, WS
Rochau, G
Schroen, DG
Sethian, J
Sheliak, JD
Streit, JE
Tillack, M
Vermillion, BA
Valmianski, EI
机构
[1] Gen Atom, San Diego, CA 92186 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[4] Sandia Natl Labs, Albuquerque, NM 87185 USA
[5] Univ Calif San Diego, La Jolla, CA 92093 USA
[6] TSD Management Associates, Encinitas, CA 92024 USA
[7] Schafer Corp, SNL, Albuquerque, NM 87185 USA
[8] USN, Res Lab, Washington, DC 20375 USA
关键词
D O I
10.13182/FST05-A838
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
A central feature of an Inertial Fusion Energy (IFE) power plant is a target that has been compressed and heated to fusion conditions by the energy input of the driver. The technology to economically manufacture and then position cryogenic targets at chamber center is at the heart of future IFE power plants. For direct drive IFE (laser fusion), energy is applied directly to the surface of a spherical CH polymer capsule containing the deuterium-tritium (DT) fusion fuel at approximately 18 K. For indirect drive (heavy ion fusion, HIF), the target consists of a similar fuel capsule within a cylindrical metal container or "hohlraum" which converts the incident driver energy into x-rays to implode the capsule. For either target, it must be accurately delivered to the target chamber center at a rate of about 5-10 Hz, with a precisely predicted target location. Future successful fabrication and injection systems must operate at the low cost required for energy production (about $0.25/target, about 10(4) less than current costs). Z-pinch driven IFE (ZFE) utilizes high current pulses to compress plasma to produce x-rays that indirectly heat a fusion capsule. ZFE target technologies utilize a repetition rate of about 0.1 Hz with a higher yield. This paper provides an overview of the proposed target methodologies for laser fusion, HIF, and ZFE, and summarizes advances in the unique materials science and technology development programs.
引用
收藏
页码:1131 / 1138
页数:8
相关论文
共 29 条
[1]   Increasing the coupling efficiency in a heavy ion, inertial confinement fusion target [J].
Callahan-Miller, DA ;
Tabak, M .
NUCLEAR FUSION, 1999, 39 (11) :1547-1556
[2]  
EBEY PS, 2004, COMMUNICATION 0907
[3]  
ELGUEBALY L, RECYCLING ISSUES FAC
[4]  
FROLOV BK, 2004, UNPUB PHYS PLASMAS
[5]   Addressing the issues of target fabrication and injection for inertial fusion energy [J].
Goodin, DT ;
Nobile, A ;
Hoffer, J ;
Nikroo, A ;
Besenbruch, GE ;
Brown, LC ;
Maxwell, JL ;
Meier, WR ;
Norimatsu, T ;
Pulsifer, J ;
Rickman, WS ;
Steckle, W ;
Stephens, EH ;
Tillack, M .
FUSION ENGINEERING AND DESIGN, 2003, 69 (1-4) :803-806
[6]   A credible pathway for heavy ion driven target fabrication and injection [J].
Goodin, DT ;
Nobile, A ;
Alexander, NB ;
Brown, LC ;
Maxwell, JL ;
Pulsifer, J ;
Schwendt, AM ;
Tillack, M ;
Willms, RS .
LASER AND PARTICLE BEAMS, 2002, 20 (03) :515-520
[7]   Developing the basis for target injection and tracking in Inertial Fusion Energy power plants [J].
Goodin, DT ;
Gibson, CR ;
Petzoldt, RW ;
Siegel, NP ;
Thompson, L ;
Nobile, A ;
Besenbruch, GE ;
Schultz, KR .
FUSION ENGINEERING AND DESIGN, 2002, 60 (01) :27-36
[8]   Developing target injection and tracking for inertial fusion energy power plants [J].
Goodin, DT ;
Alexander, NB ;
Gibson, CR ;
Nobile, A ;
Petzoldt, RW ;
Siegel, NP ;
Thompson, L .
NUCLEAR FUSION, 2001, 41 (05) :527-535
[9]  
GOODIN DT, 2004, IN PRESS NUCL FUSION
[10]  
GOODIN DT, 1996, P 19 S FUS TECHN LIS, P1289