Migration of a van der Waals bubble: Lattice Boltzmann formulation

被引:29
|
作者
Holdych, DJ [1 ]
Georgiadis, JG [1 ]
Buckius, RO [1 ]
机构
[1] Univ Illinois, Dept Mech & Ind Engn, Lab Quantitat Visualizat Energet, Urbana, IL 61801 USA
关键词
D O I
10.1063/1.1352625
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A numerical study of the isothermal migration of a two-dimensional bubble in Poiseuille flow is reported here for vapor-liquid density and dynamic viscosity ratios of 1/8, Re-d=1, and Ca=2. A lattice Boltzmann model with a van der Waals equation of state is employed to simulate the diffuse interface for three interface thickness to bubble diameter ratios, 1/5, 1/10, and 1/20. Point-by-point comparisons with the sharp-interface incompressible counterpart (reported in the literature) reveal velocity discrepancies which are more evident on the vapor side. These differences are a manifestation of a finite mass flux through the interface, associated with driven finite-thickness interfaces. An analytical study of the one-dimensional analog of the traveling diffuse interface problem explains this phenomenon and shows that this flux vanishes as a result of viscous dissipation as the interface thickness tends to zero. This trend is corroborated by the two-dimensional lattice Boltzmann results. (C) 2001 American Institute of Physics.
引用
收藏
页码:817 / 825
页数:9
相关论文
共 50 条
  • [1] Lattice Boltzmann simulation of mixtures with multicomponent van der Waals equation of state
    Ridl, Kent S.
    Wagner, Alexander J.
    PHYSICAL REVIEW E, 2018, 98 (04)
  • [2] Lattice Boltzmann simulation of van der Waals phase transition with chemical potential
    He, G
    Zhao, KH
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1998, 29 (04) : 623 - 626
  • [3] Three-dimensional lattice-Boltzmann model of van der Waals fluids
    Kalarakis, AN
    Burganos, VN
    Payatakes, AC
    PHYSICAL REVIEW E, 2003, 67 (01): : 167021 - 167028
  • [4] Lattice-Boltzmann model for van der Waals fluids with liquid-vapor phase transition
    Zhang, Chunhua
    Liang, Hong
    Yuan, Xiaolei
    Liu, Gaojie
    Guo, Zhaoli
    Wang, Lianping
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 179
  • [5] Simulation of phase separation in a Van der Waals fluid under gravitational force with Lattice Boltzmann method
    Oscar Fogliatto, Ezequiel
    Clausse, Alejandro
    Eduardo Teruel, Federico
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2019, 29 (09) : 3095 - 3109
  • [6] The consistent Boltzmann algorithm for the van der Waals equation of state
    Alexander, FJ
    Garcia, AL
    Alder, BJ
    PHYSICA A, 1997, 240 (1-2): : 196 - 201
  • [7] Influence of van der Waals forces on a bubble moving in a tube
    Hammoud, Naima H.
    Trinh, Philippe H.
    Howell, Peter D.
    Stone, Howard A.
    PHYSICAL REVIEW FLUIDS, 2017, 2 (06):
  • [8] Two-dimensional off-lattice Boltzmann model for van der Waals fluids with variable temperature
    Busuioc, Sergiu
    Ambrus, Victor E.
    Biciusca, Tonino
    Sofonea, Victor
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (01) : 111 - 140
  • [9] Poisson-Boltzmann Calculations: van der Waals or Molecular Surface?
    Pang, Xiaodong
    Zhou, Huan-Xiang
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 13 (01) : 1 - 12
  • [10] Van der Waals contribution to the lattice potential in alkali halides
    Wani, Tanveer Ahmad
    Singh, Pankaja
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2013, 7 (9-10): : 751 - 753