First-principles Modeling of Thermal Transport in Materials: Achievements, Opportunities, and Challenges

被引:43
作者
Ma, Tengfei [1 ]
Chakraborty, Pranay [1 ]
Guo, Xixi [1 ]
Cao, Lei [1 ]
Wang, Yan [1 ]
机构
[1] Univ Nevada, Dept Mech Engn, Reno, NV 89557 USA
关键词
Density functional theory; Electron; First principles; Phonon; Thermal transport; ACOUSTIC-MISMATCH MODEL; SUPERLATTICE THERMOELECTRIC-MATERIALS; MECHANICAL-PROPERTIES; GRAPHENE; CONDUCTIVITY; EQUATION; ELECTRON; RECTIFICATION; CONDUCTANCE; PERFORMANCE;
D O I
10.1007/s10765-019-2583-4
中图分类号
O414.1 [热力学];
学科分类号
摘要
Thermal transport properties have attracted extensive research attentions over the past decades. First-principles-based approaches have proved to be very useful for predicting the thermal transport properties of materials and revealing the phonon and electron scattering or propagation mechanisms in materials and devices. In this review, we provide a concise but inclusive discussion on state-of-the-art first-principles thermal modeling methods and notable achievements by these methods over the last decade. A wide range of materials are covered in this review, including two-dimensional materials, superhard materials, metamaterials, and polymers. We also cover the very recent important findings on heat transfer mechanisms informed from first principles, including phonon-electron scattering, higher-order phonon-phonon scattering, and the effect of external electric field on thermal transport. Finally, we discuss the challenges and limitations of state-of-the-art approaches and provide an outlook toward future developments in this area.
引用
收藏
页数:37
相关论文
共 50 条
[31]   THERMAL SIMULATION FOR NANOSCALE FINFET USING FIRST-PRINCIPLES NONGRAY PHONON BOLTZMANN TRANSPORT EQUATION [J].
Sheng, Yufei ;
Bao, Hua .
PROCEEDINGS OF ASME 2024 7TH INTERNATIONAL CONFERENCE ON MICRO/NANOSCALE HEAT AND MASS TRANSFER, MNHMT 2024, 2024,
[32]   First-principles investigations of 2D materials: Challenges and best practices [J].
Yadav, Asha ;
Acosta, Carlos Mera ;
Dalpian, Gustavo M. ;
Malyi, Oleksandr I. .
MATTER, 2023, 6 (09) :2711-2734
[33]   Electronic structure, elastic and thermal transport properties of thorium monocarbide based on first-principles study [J].
Wang, Hao ;
Lan, Jun-Qing ;
Hu, Cui-E ;
Chen, Xiang-Rong ;
Geng, Hua-Yun .
JOURNAL OF NUCLEAR MATERIALS, 2019, 524 :141-148
[34]   Effect of pore structures on desolvation of carbon materials as the electrode materials of supercapacitors: A first-principles study [J].
Zhang, Xu ;
Yang, Shaobin ;
Tang, Shuwei ;
Li, Sinan ;
Hao, Dongyang ;
Shen, Ding .
COMPUTATIONAL MATERIALS SCIENCE, 2022, 202
[35]   FIRST-PRINCIPLES THERMODYNAMICS OF ENERGETIC MATERIALS [J].
Landerville, A. C. ;
Conroy, M. W. ;
Lin, You ;
Budzevich, M. ;
White, C. T. ;
Oleynik, I. I. .
SHOCK COMPRESSION OF CONDENSED MATTER - 2011, PTS 1 AND 2, 2012, 1426
[36]   Electronic transport properties of silicon carbide molecular junctions: first-principles study [J].
Mu, Yi ;
Zeng, Zhao-Yi ;
Cheng, Yan ;
Chen, Xiang-Rong .
RSC ADVANCES, 2016, 6 (94) :91453-91462
[37]   First-principles calculations of transport and magnetic properties of rare-earth materials [J].
Glasbrenner, J. K. ;
An, J. M. ;
Kudrnovsky, J. ;
Drchal, V. ;
Khmelevskyi, S. ;
Turek, I. ;
Belashchenko, K. D. .
SPINTRONICS V, 2012, 8461
[38]   Protective Coating Interfaces for Perovskite Solar Cell Materials: A First-Principles Study [J].
Fangnon, Azimatu ;
Dvorak, Marc ;
Havu, Ville ;
Todorovic, Milica ;
Li, Jingrui ;
Rinke, Patrick .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (10) :12758-12765
[39]   Defects and diffusion: First-principles modeling [J].
Lee, YJ ;
Nieminen, RM .
DIFFUSIONS IN MATERIALS: DIMAT2000, PTS 1 & 2, 2001, 194-1 :261-278
[40]   First-Principles Modeling in Heterogeneous Electrocatalysis [J].
Alfonso, Dominic R. ;
Tafen, De Nyago ;
Kauffmann, Douglas R. .
CATALYSTS, 2018, 8 (10)