LOCAL AND NONLOCAL WEIGHTED p-LAPLACIAN EVOLUTION EQUATIONS WITH NEUMANN BOUNDARY CONDITIONS

被引:25
作者
Andreu, F. [1 ]
Mazon, J. M. [1 ]
Rossi, J. D. [2 ]
Toledo, J. [1 ]
机构
[1] Univ Valencia, Dept Anal Matemat, Valencia, Spain
[2] FCEyN UBA 1428, Dept Matemat, Buenos Aires, DF, Argentina
关键词
Nonlocal diffusion; p-Laplacian; total variation flow; Neumann boundary conditions; CONVOLUTION MODEL; OBSTACLE PROBLEM; REGULARITY; DISPERSAL; STABILITY;
D O I
10.5565/PUBLMAT_55111_03
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study existence and uniqueness of solutions to the local diffusion equation with Neumann boundary conditions and a bounded nonhomogeneous diffusion coefficient g >= 0, {u(t) = div (g vertical bar del u vertical bar(p-2)del u) in ]0,T[x Omega, g vertical bar del u vertical bar(p-2)del u . eta = 0 on ]0,T[x partial derivative Omega, for 1 <= p < infinity. We show that a nonlocal counterpart of this diffusion problem is u(t)(t,x) = integral(Omega)J(x-y)g(x+y/2)vertical bar u(t,y)-u(t,x)vertical bar(p-2)(u(t,y)-u(t,x)) dy in ]0,T[x Omega, where the diffusion coefficient has been reinterpreted by means of the values of g at the point x+y/2 in the integral operator. The fact that g >= 0 is allowed to vanish in a set of positive measure involves subtle difficulties, specially in the case p = 1.
引用
收藏
页码:27 / 66
页数:40
相关论文
共 51 条
[1]   A NOTION OF TOTAL VARIATION DEPENDING ON A METRIC WITH DISCONTINUOUS COEFFICIENTS [J].
AMAR, M ;
BELLETTINI, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1994, 11 (01) :91-133
[2]  
Ambrosio L., 2000, Oxford Mathematical Monographs
[3]   A nonlocal p-Laplacian evolution equation with Neumann boundary conditions [J].
Andreu, F. ;
Mazon, J. M. ;
Rossi, J. D. ;
Toledo, J. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (02) :201-227
[4]   A NONLOCAL p-LAPLACIAN EVOLUTION EQUATION WITH NONHOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS [J].
Andreu, F. ;
Mazon, J. M. ;
Rossi, J. D. ;
Toledo, J. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (05) :1815-1851
[5]   The limit as p → ∞ in a nonlocal p-Laplacian evolution equation: a nonlocal approximation of a model for sandpiles [J].
Andreu, F. ;
Mazon, J. M. ;
Rossi, J. D. ;
Toledo, J. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 35 (03) :279-316
[6]  
Andreu F., 2004, Progress in Mathematics, V223
[7]  
Andreu F., 1997, Adv. Math. Sci. Appl., V7, P183
[8]  
Andreu F., 2001, DIFFERENTIAL INTEGRA, V14, P321
[9]   The Neumann problem for nonlocal nonlinear diffusion equations [J].
Andreu, Fuensanta ;
Mazon, Jose M. ;
Rossi, Julio D. ;
Toledo, Julian .
JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (01) :189-215
[10]  
[Anonymous], 1973, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert