Corticospinal properties following short-term strength training of an intrinsic hand muscle

被引:70
作者
Kidgell, Dawson J. [1 ,2 ]
Pearce, Alan J. [2 ]
机构
[1] Deakin Univ, Sch Exercise & Nutr Sci, Melbourne, Vic, Australia
[2] Victoria Univ, ISEAL, Melbourne, Vic 8001, Australia
关键词
Transcranial magnetic stimulation; Corticospinal; Cortical inhibition; Strength training; TRANSCRANIAL MAGNETIC STIMULATION; MOTOR-EVOKED-POTENTIALS; SILENT PERIOD; CORTICOCORTICAL INHIBITION; VOLUNTARY CONTRACTION; NEURAL ADAPTATION; CORTEX; EXCITABILITY; SYNCHRONIZATION; IMMOBILIZATION;
D O I
10.1016/j.humov.2010.01.004
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Practicing skilled tasks that involve the use of the hand and fingers has been shown to lead to adaptations within the central nervous system (CNS) underpinning improvements in the performance of the acquired task. However, neural adaptations following a period of strength training in the hand is not well understood. In order to determine the neural adaptations to strength training, we compared the effect of isometric strength training of the right first dorsal interosseous (FDI) muscle on the electromyographic (EMG) responses to transcranial magnetic stimulation (TMS) over left M1. The specific aim of the study was to investigate the corticospinal responses, including latency, motor-evoked potential amplitude (MEP), and silent period duration (SP) following 4 week of strength training of the FDI muscle. Sixteen healthy adults (13 male, three female: 24.12 +/- 5.21 years), were randomly assigned into a strength training (n = 8) or control group (n = 8). Corticospinal measures of active motor threshold (AMT), MEP amplitude, and SP duration were obtained using TMS during 5% and 20% of maximal voluntary contraction force (MVC) pre and post 4 week strength training. Following training, MVC force increased by 33.8% (p = .01) in the training group compared to a 13% increase (p = .2) in the untrained group. There were no significant differences in AMT, latency, or MEP amplitude between groups following training. However, in the trained group, there was a 16 ms reduction in SP duration at 5% of MVC (p = .01) and 25 ms reduction in SP duration at 20% of MVC (p = .03). These results demonstrate a task dependent adaptation in corticospinal inhibition via a reduction in cortical SP duration that may in part underpin the strength increases observed following strength training. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:631 / 641
页数:11
相关论文
共 67 条
[1]   Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses [J].
Aagaard, P ;
Simonsen, EB ;
Andersen, JL ;
Magnusson, P ;
Dyhre-Poulsen, P .
JOURNAL OF APPLIED PHYSIOLOGY, 2002, 92 (06) :2309-2318
[2]   Task-specific changes in motor evoked potentials of lower limb muscles after different training interventions [J].
Beck, S. ;
Taube, W. ;
Gruber, M. ;
Amtage, F. ;
Gollhofer, A. ;
Schubert, M. .
BRAIN RESEARCH, 2007, 1179 :51-60
[3]   Lower limb skeletal muscle function after 6 wk of bed rest [J].
Berg, HE ;
Larsson, L ;
Tesch, PA .
JOURNAL OF APPLIED PHYSIOLOGY, 1997, 82 (01) :182-188
[4]   Mechanisms of use-dependent plasticity in the human motor cortex [J].
Bütefisch, CM ;
Davis, BC ;
Wise, SP ;
Sawaki, L ;
Kopylev, L ;
Classen, J ;
Cohen, LG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :3661-3665
[5]   Physiological studies of the corticomotor projection to the hand after subcortical stroke [J].
Byrnes, ML ;
Thickbroom, GW ;
Phillips, BA ;
Wilson, SA ;
Mastaglia, FL .
CLINICAL NEUROPHYSIOLOGY, 1999, 110 (03) :487-498
[6]   NEUROMUSCULAR ADAPTATIONS TO TRAINING [J].
CANNON, RJ ;
CAFARELLI, E .
JOURNAL OF APPLIED PHYSIOLOGY, 1987, 63 (06) :2396-2402
[7]   The sites of neural adaptation induced by resistance training in humans [J].
Carroll, TJ ;
Riek, S ;
Carson, RG .
JOURNAL OF PHYSIOLOGY-LONDON, 2002, 544 (02) :641-652
[8]   Time course of corticospinal excitability in reaction time and self-paced movements [J].
Chen, R ;
Yaseen, Z ;
Cohen, LG ;
Hallett, M .
ANNALS OF NEUROLOGY, 1998, 44 (03) :317-325
[9]   Interactions between inhibitory and excitatory circuits in the human motor cortex [J].
Chen, R .
EXPERIMENTAL BRAIN RESEARCH, 2004, 154 (01) :1-10
[10]   Mechanism of the silent period following transcranial magnetic stimulation - Evidence from epidural recordings [J].
Chen, R ;
Lozano, AM ;
Ashby, P .
EXPERIMENTAL BRAIN RESEARCH, 1999, 128 (04) :539-542